
.
8

JPL Publication 88-31

Hypercube Matrix Computation Task
Report for 1986-1988

Rue1 H. Calalo
William A. lmbriale
Nathan Jacobi
Paulett C. Liewer
Thomas G. Lockhart
Gregory A. Lyzenga
James R. Lyons
Farzin Manshadi
Jean E. Patterson

August 1,1988

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Teehnology
Pasadena, California

N8E-206 4 2

Uoclas
G3/61 O l S E E 4 8

JPL Publication 88-31

Hypercube Matrix Computation Task
Report for 1 986 - 1 988

Rue1 H. Calalo
William A. lmbriale
Nathan Jacobi
Paulett C. Liewer
Thomas G. Lockhart
Gregory A. Lyzenga
James R. Lyons
Farzin Manshadi
Jean E. Patterson

August 1,1988

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

ABSTRACT

A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion
Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the
solution of large-scale electromagnetic Scattering problems. Three scattering analysis codes
are being implemented and assessed on a JPL/Califomia Institute of Technology (Caltech)
Mark I11 Hypercube. The codes, which utilize different underlying algorithms, give a
means of evaluating the general applicability of this parallel architecture. The three analysis
codes being implemented are a frequency domain method of moments code, a time domain
finite difference code, and a frequency domain finite elements code. These analysis
capabilities are being integrated into an electromagnetics interactive analysis workstation
which can serve as a design tool for the construction of antennas and other radiating or
scattering structures.

This document is a summary of the first two years of work on the Hypercube
Matrix Computation effort. It includes both new developments and results as well as work
previously reported in the "Hypercube Matrix Computation Task: Final Report for
1986-87" (JPL Publication 87- 18).

...
lll

ACKNOWLEDGEMENTS

The work contained in this report has been done in the Jet Propulsion Laboratory's
Telecommunications Science and Engineering Division. Two sections of this division have
joined together on this work to provide unique expertise. One section is the Tracking
Systems and Applications Section, where much of the Mark I11 Hypercube hardware and
software development, as well as parallel algorithm development for scientific applications,
takes place. The other is the Radio Frequency and Microwave Subsystems Section, which
has provided much experience in antenna design and electromagnetics scattering analysis.

We wish to acknowledge the most helpful consultation received from the University
of Illinois, Urbana-Champaign Electrical Engineering and Computer Science Department.
In particular, we would like to express thanks to Professor Raj Mittra, Dr. Andrew
Peterson, and Stephen Gedney in the Electromagnetics Laboratory. They have provided us
with much insight in the formulation of the finite element problem as we11 as a finite
element code. We also wish to thank Professor Alan Taflove at Northwestern University
for the very useful discussions and for providing us with a finite difference code.

I

This work was performed under NASA contract NAS7-918, Task Order RE232,
Amendment No. 8.

iv

I .

I1 .

I11 .

IV .

CONTENTS

INTRODUCTION ...

THE MARK I11 HYPERCUBE ..
A . INTRODUCTION ..
B . HARDWARE ...
c . SOFTWARE ..
D . NEW DEVELOPMENTS ..

THE FINITE DIFFERENCE TIME DOMAIN CODE
A .
B .
C .
D .
E .

F .

G .
H .

INTRODUCTION ..
GENERAL THEORY ..
RADIATION BOUNDARY CONDITIONS
RADAR CROSS SECTION ...
PARALLEL DECOMPOS~ON ...
1 .

Computation Lattice ...
Update of Discrete Field Components on the

Update of Discrete Field Components on the
Truncation Planes ..
Radar Cross Section Calculation

2 .

3 .

PERFORMANCE OF THE FDTD CODE ON THE
HYPERCUBE ..
RESULTS FOR DIFFERENT SCATTERERS
CONCLUSIONS ...

REFERENCES ..

THE FREQUENCY DOMAIN METHOD OF MOMENTS CODE
A . INTRODUCTION ..
B . G E N E W THEORY AND ALGORITHMS

1-1

2-1

2-1

2-1

2-3

2-3

3-1

3-1

3-2

3-6

3-7

3-9

3-9

3-12

3-12

3-13

3-16

3-19

3-20

4-1

4-1

4-2

V

C .

D .

PARALLEL DECOMPOSITION OF NEC

1 . Structure of the Code ..
a . Input ..
b . Matrix Fill ...
C . Excitation Fill ...

d . Factorization ...

e . Matrix Equation Solution
Current Calculation and Output f .

Interaction Matrix Fill ...

Parallel Fill of the Excitation Vector
Factorization and Solution ..
a . Householder Transformation
b . Gaussian Elimination

Solution ..
Numerical Green's Function

NUMERICAL RESULTS ...
1 .

2 .
3 .
4 .

2 .
3 .

4 .

C .
d .

Monopole on a Pedestal Over Perfect Ground
Scattering of a Plane Wave by a Conducting Sphere
T Antenna on a Conducting Box Over Perfect Ground
Extended Thin Wire and Loading

4- 8

4-8

4-9

4-9

4-12

4-12

4-12

4-12

4-13

4-19

4-22

4-22

4-23

4-26

4-26

4-28

4-29

4-30

4-31

4-31

E . PERFORMANCE .. 4-32

1 . Timing ... 4-33

a . Scattering by a Sphere 4-33

b . Monopole on a Pedestal 4-35

2 . Fixed Problem ... 4-37

3 . 4-41 Analysis of the Performance of Fill Algorithms

vi

F . FUTURE PLANS ..
REFERENCES ..

V . FINITE ELEMENT ANALYSIS ..
A .

B .

C .

DESCRIPTION OFTHE METHOD
1 . Application of Finite Elements to Electromagnetic

Finite Elements in the Context of Parallel Processing
Solution by the Conjugate Gradient Method

Scattering ...

2 .
3 .

4 .
INITIAL RESULTS FOR TWO-DIMENSIONAL
SCATTERING ..
1 .
2 . Solution Methods ..

3 .

PLANS FOR FUTURE WORK ..
1 .
2 .

Extensions of the Conjugate Gradient Method

Description of the Problem

Comparative Performance of Solution Methods

Parallel Program Development
Proposed Test Problems ..

REFERENCES ..

VI . TEST CASE: SCATTERING FROM A CONDUCTING SPHERE
A . DESCRIPTION OF THE TEST CASE
B . RESULTS AND COMPARISONS

1 . Test Case Using the Finite Difference Time Domain Code ...
2 . Test Case Using the Numerical Electromagnetics Code
3 .
4 .

Test Case Using the Exact Solution
Contour Plots of Different Fields for the Spherical
Scatterer ...

5 . Discussion of Results ...
REFERENCES ..

4-43

4-45

5-1

5-1

5-1

5-4

5-8

5-10

5-12

5-12

5-14

5-15

5-17

5-17

5-19

5-21

6-1

6-1

6-1

6- 1

6-2

6-3

6-4

6-4

6-21

vii

VI1 . THE ELECTROMAGNETIC INTERACTIVE ANALYSIS
WORKSTATION .. 7-1

A . OVERVIEW ... 7-1

B . MENU ENVIRONMENT ... 7-3

C . STRUCTURE EDITOR ... 7-7

1 . Modeling Commands ... 7-7

2 . Neutral File ... 7-9

3 . NEC Input File ... 7-9

4 . Creating Patches and Wires for NEC 7-10

5 . Modifying Existing Structures 7-18

D . TRANSLATORS ... 7-20

. .. 1 Patch Equations 7-20

2 GPK to NEC Translation 7-23

3 NEC to GPK Translation 7-25

. ...

. ...

E . CARD E D ~ O R ... 7-28

. ... 1 FIELDS File for NEC 7-28

2 . ESCAPES File for Tektronix VTlOO and Sun
Window Terminals .. 7-30

3 . Window Interface to the Card Editor 7-32

F . RUN CONTROL ... 7-34

G . RESULTS ANALYSIS .. 7-36

REFERENCES .. 7-40

VI11 . ANALYSIS OF THE NEC RESULTS USING THE ELECTROMAGNETIC
INTERACTIVE ANALYSIS WORKSTATION 8-1

A . INTRODUCTION .. 8-1

B . DESCRIPTION OF THE EIAW CODE NECPAT 8-1

C . NECPAT OUTPUT OPTIONS ... 8-4

...
Vlll

1 . Far Field Information .. 8-4

a . Color Contour Plots 8-4

b . 1-d Line Plots ... 8-6

c . Printed Output ... 8-7

2 . Near Field Information .. 8-8

a . Colour Contour Plots 8-8

b . 1-d Line Plots ... 8-9

c . Printed Output ... 8-9

3 . Induced Currents ... 8-10

a . Color Contour Plots 8-10

b . Printed Output ... 8-11

D . FUTURE PLANS .. 8-11

REFERENCES .. 8-12

IX . CONCLUSIONS ..
A . PROBLEM SIZE ...
B . .HYPERCUBE PERFORMANCE ..

1 .
2 .

Code Speed on 32 Nodes Relative to 1 Node
Fixed Problem Size., ..

3 . Comparison With Other Sequential Computers
C . ELECTROMAGNETIC INTERACTIVE ANALYSIS

WORKSTATION ...
D . CURRENT WORK ..

9-1

9-1

9-2

9-2

9-4

9-4

9-5

9-5

Figures

2.1. Hardware configuration for the Mark III Hypercube 2-2

2.2. Prototype hypercube Concurrent I/O system 2-4

3.1. Electric and magnetic field components in a typical unit cell 3-5

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

Exs points 2 to 10 update Exs point 1 on a truncation plane

The decomposition of the global lattice among four nodes of the
hypercube. in which the black arrows symbolize the magnetic field
components used to update the E, component within nodes and
between the boundaries of nodes ...

perpendicular to the y axis ...

The decomposition of the global lattice among four nodes of the
hypercube. in which the black arrows symbolize the electric field
components used to update the H, component within nodes and
between the boundaries of nodes ...

Four sets of timing runs for a fixed number of unit cells per node
of the hypercube ..
The perfectly conducting cube scatterer

The magnitude and phase for the x component of the current on
the path below the cube scatterer (top). and the magnitude and
phase for the z component of the current on the side path of the
cube scatterer (bottom) ...

Monostatic RCS versus iteration count for the flat plate scatterer

The jth basis function for wires ...

Two examples of symmetry: (a) coaxial rings (cylindrical
symmetry). and (b) a rhombic antenna (plane symmetry)
Structure of the sequential NEC-2 program
Structure of the parallel NEC program
Interaction of wire segments i and j

Sequential interaction matrix fill ...
Assignment of rows to hypercube processors

Sequential source loop for the parallel interaction matrix fill
program ..
Parallel source loop for the parallel interaction matrix fiil program ...
Node arrangement for the source loop parallel program in a
32-node hypercube ...
Example of a parallel source loop algorithm on 4 nodes
Assignment of processors for an object with 3-fold
symmetry and N segments ...

3-7

3-10

3-11

3-14

3-17

3-18

3-19

4-4

4-6

4-10

4-11

4-14

4-14

4-15

4-16

4-18

4-19

4-20

4-21

X

4.13. Householder transformation.. , . 4-22

4.14. Upper right triangular matrix formed using the
Householder transformation. 4-24

4.15. Householder transformation after the kfh transformation 4-25

4.16. Matrix factorization by Gaussian elimination.. 4-26

4.17. Parallel factorization by Gaussian elimination.. 4-27

4.18. Three main branches to the parallel NEC code . 4-29

4.19. Radiation pattern of a quarter wave monopole on a
pedestal over perfect ground; @ = 0 cut 4-30

4.20. Scattering pattern of a sphere with ka = 3.0 in the
@=Oplane ... 4-31

4.2 1. Radiation pattern of a T antenna on a box over perfect
ground in the @ = 0 plane , 4-32

4.22. Radiation pattern of a monopole on a pedestal over
perfect ground in the @ = 0 plane .. 4-33

4.23. Time and speedup factor for filling the interaction matrix of a
sphere modeled by 120 surface patches versus the dimension of
the hypercube 4-34

4.24. Time and speedup factor for factoring the interaction matrix of a
sphere modeled by 120 surface patches versus the dimension of
the hypercube 4-35

4.25. Time and speedup factor for filling the interaction matrix of the
monopole on a pedestal versus the dimension of the hypercube.. 4-36

4.26. Factor time and speedup factor for the interaction matrix of the
monopole on a pedestal versus the dimension of the cube.. 4-36

4.27. Speedup factor for filling (using SLSC) and factoring (using
Gaussian elimination) the interaction matrix for scattering by a
monopole on a pedestal versus the number of nodes used

4.28. Speedup factor for filling and factoring the interaction matrix of
the monopole on a pedestal versus the number of nodes used

4.29. Scaling of the performance of the parallel fill algorithm where the
problem size per node remains fixed at 5000 elements..

4.30. General wire segment connection.. ,

4-38

4-40

4-42

4-42

xi

4.31. Time for the interaction matrix fill for a monopole on a pedestal
versus the number of segments in the model for the source-loop

The finite element method employs a discretized spatial domain for

parallel and source-loop sequential codes..

the approximate solution of boundary value problems
Domain decomposition divides the finite element grid into
subdomains assigned to different processors

4-44

5.1.
5-2

5.2.
5-5

5-13 5.3.

5.4.

Finite element grid of the 2-d cylinder test problem domain..
Convergence histories for conjugate gradient methods applied to
the finite element system arising from the grid of Figure 5.3 5-16

6.1. Plot of the monostatic radar cross section versus
the number of iterations .. 6-3

Contour plots, produced by the NEC code (left) and the FDTD
code (right), of the magnitude of the z component of the scattered
electric field in a plane in front of the sphere scatterer..
Contour plot, produced by the exact solution code, of the
magnitude of the z component of the scattered electric field
in a plane in front of the sphere scatterer..

6.2.

6-5

6.3.

6.4.

6-6

Contour plots, produced by the NEC code (left) and the FDTD
code (right), of the phase of the z component of the scattered
electric field in a plane in front of the sphere scatterer.. 6-7

6.5. Contour plot, produced by the exact solution code, of the phase
of the z component of the scattered electric field in a plane in
front of the sphere scatterer. ... 6-8

6.6. Contour plots, produced by the NEC code (left) and the FDTD
code (right), of the phase of the z component of the scattered
electric field in a plane in front of the sphere scatterer.. 6-9

6.7. Contour plot, produced by the exact solution code, of the phase
of the z component of the scattered electric field in a plane in
front of the sphere scatterer .. 6-10

Contour plots, produced by the NEC code (left) and the FDTD
code (right), of the magnitude of the x component of the scattered
magnetic field in a plane in front of the sphere scatterer

6.8.

6-1 1

6.9. Contour plot, produced by the exact solution code, of the
magnitude of the x component of the scattered magnetic field
in a plane in front of the sphere scatterer..
Contour plots, produced by the NEC code (left) and the FDTD
code (right), of the phase of the x component of the scattered
magnetic field in a plane in front of the sphere scatterer

6-12

6.10.

6-13

xii

6.1 1 . Contour plot. produced by the exact solution code. of the phase
of the x component of the scattered magnetic field in a plane in
front of the sphere scatterer .. 6-14

6.12. Contour plots. produced by the NEC code (left) and the FDTD
code (right). of the phase of the x component of the scattered
magnetic field in a plane in front of the sphere scatterer 6-15

6.13. Contour plot. produced by the exact solution code. of the phase
of the x component of the scattered magnetic field in a plane in
front of the sphere scatterer .. 6-16

6.14. Contour plots of the magnitude of the 8 component of the
scattered far field .. 6-17

6.15. Contour plots of the magnitude of the @ component of the
scattered far field .. 6-18

6.16.

7.1 .
Contour plot of the radar cross section (RCS) 6-19

Diagram of the Electromagnetic Interactive Analysis Workstation.
Hypercube Control Processor. and Mark I11 Hypercube
Analysis paths between modules of the Electromagnetic
Interactive Analysis Workstation .. 7-4

7-3

7.2.

7.3. Main window of the EIAW showing the Main Menu 7-5

7.4. Main window of the EIAW showing the Setup Menu 7-6

7.5.

7.6.

7.7.

7.8.

Commands to construct an octant of a unit sphere 7-12

7-12

7-13

Octant of a sphere and the first 10 geometric patches
Portion of an output file containing patch area information

Portion of a neutral file containing arbitrarily shaped patch
information .. 7-14

7.9. Commands to construct an octant of a unit cube 7-15

7.10. Octant of a unit cube with corner grid points 7-15

7.1 1 . Portion of a neutral file containing finite element and node
‘information for the cube octant .. 7-16

7.1 2 . Commands to create wire elements 7-16

7.13. Set of four wire segments modeled in GPK 7-17

7.14. Portion of a neutral file with information on wire segments 7-19

...
Xlll

7.15. Main window of the EIAW showing the Setup Menu and the
File Translation option ... 7-21

Portion of an NEC input file for the sphere scatterer
Portion of an NEC input file for the cube scatterer
Portion of an NEC input file for a set of wire segments

through the NEC to GPK translator

7.16.

7.17.

7.18.

7.1 9 . Portion of a neutral file produced by passing an NEC input file

7.20. Portion of the FTELDS file for the Numerical Electromagnetics
Code .. 7-29

7-24

7-25

7-25

7-27

7.2 1 . Portion of the ESCAPES file for Tektronix VTloO and
Sun terminals .. 7-31

7.22. The card editor window in the EIAW 7-33

7.23. The card editor window showing the appearance of
the card menu .. 7-35

7.24. Example input file for the run control program 7-36

7.25. The Run Menu and a typical interactive session with the run
control program ... 7-37

7.26. The Output Menu and a portion of a typical run with the output

Block diagram of the structure of NECPAT in comparison with

generator ... 7-39

the structure of the hypercube NEC code
8.1 .

8-3

8.2. Definition of the spherical coordinate system used in NEC.
NECPAT. and PATR AN .. 8-5

8.3.

8.4.

Sample 1-d far field plot for the test case of Section V
Sample 1-d near field plot for the test case of Section V

8-7

8-10

Tables

4.1. Timings for the sphere scatterer ... 4-39

Timings for the monopole on a pedestal problem 4.2. 4-39

xiv

SECTION I

INTRODUCTION

A major objective of the Hypercube Matrix Computation task is to investigate the
applicability of a parallel computing architecture to the implementation and solution of
large-scale electromagnetic scattering problems by implementing codes which would
encompass different numerical algorithms. Several analysis codes are being assessed on a
parallel computing Mark III Hypercube. The first code which has been implemented is the
frequency domain method of moments solution, Numerical Electromagnetics Code (NEE-
2), developed at Lawrence Livermore National Laboratory. The second code is a time
domain finite difference solution to Maxwell's equations. A third code currently being
developed is a 2-dimensional finite element technique.

To assess the applicability of the codes we must be able to characterize the
performance. Several different measures may be applied when assessing this performance.
The first measure compares two things: first, the problem size possible using the
hypercube with 128 megabytes of dynamic memory employed in a 32-node configuration,
and second, the problem size possible using a more typical sequential user environment.
Another measure of performance is the computational speedup attained by the parallel
architecture. The speedup can be measured by three methods: 1) comparing the CPU times
for key components of the code running on the 32-node Mark I11 Hypercube with the CPU
times for the same code components running, for instance, on a VAX 11/750;

2) comparing the times for the code running in 32 nodes with the times for the code
running in a single node; and 3) comparing the times when the problem size per node is
fixed and the number of active nodes is varied. This last measure of speedup assesses the
scalability of the code to larger hypercube configurations.

Having developed the analysis capabilities, we have as our next objective the
integration of the codes into an electromagnetics interactive analysis environment. A
workstation has been designed to facilitate all three analysis functions: 1) graphical
specification of the structure to be analyzed, 2) hypercube execution of analysis codes, and
3) graphical display of the output.

1-1

SECTION 11

THE MARK 111 HYPERCUBE

A. INTRODUCTION

Recent advances in high speed microprocessor technology and in methods to
combine large numbers of these processors into concurrent structures introduce cost-
effective means for solving massive computing problems. A number of different schemes
for the connectivity as well as for the components of the computing elements for such
concurrent architectures have been suggested. Some machines utilize massive numbers of
small-grain (i.e., small memory size) computing elements; others concentrate large-grain
computing capability in a modest number of distributed computing elements. One such
architecture is the Jet Propulsion Laboratory (JPL)/California Institute of Technology
(Caltech) Hypercube. A hypercube is a connectivity scheme which can be viewed as an
array of N nodes where each node is capable of communicating directly with n = log;! N
neighboring nodes along the edges of an n-dimensional cube. The JPL/Caltech Hypercube
is now in its third generation of development. At this time, configurations consist of up to
64 nodes with a 128-node Mark 111 now being connected.

B. HARDWARE

The Mark 111 Ljpercube noc : has a pair of Motorola 68020 processors--one is the
main application processor and the second is the communication processor (Figure 2.1).
The communication processor handles internode communications generally without the
need to interrupt the main processor. The hypercube uses the Motorola 68881 floating
point co-processor (the Motorola 68882 is being used in later machines) which delivers in
the range of 60,000-150,000 floating point operations per second (kiloflops) per node. A
new floating point daughter board using the Weitek chip set has been added to each of the
nodes, which boosts this performance to 2.5-10 megaflops per node. To this date the
Weitek can only support 32-bit floating point operations and therefore has had limited
utility for large-scale electromagnetics problems. The retrofitting of the daughter boards to
64-bit floating point arithmetic is expected to take place in the fall of 1988 when Weitek
releases the new double precision chip.

2- 1

External
Disks

32 Node
Mark 111

Hypercube

Control
Processor

Each Node:
2 MC68020 CPUs + MC68881 Co-processor
4 Mbyte DRAM
128 Kbyte Static RAM

Weitek Floating Point Accelerator

Performance:
Computation: 1-14 Mflopshode
Communication: 2.0 Mbyte/sec/channel (Synchronous)

0.5 Mbyte/sec/channel (Asynchronous)

Figure 2.1. Hardware configuration for the Mark III Hypercube

Each node of the hypercube has 4 megabytes of dynamic random access memory
(DRAM). There is an additional 128 kilobytes of static RAM which can be utilized for the
executable code if the code is sufficiently small (Le., about 100 kilobytes). Codes run
approximately 15% faster in the fast static RAM than in the dynamic RAM.

2-2

c. SOFTWAREi

Since the hypercube has memory distributed among nodes rather than shared
memory, a message passing capability has been developed to permit nodes to communicate
with one another. Two styles of communication have been implemented. The first is the
synchronous or crystalline operating system (CrOS). In this communicating regime nodes
run asynchronously but align activity when communication is required. For some
applications the message passing requirements are highly irregular and would therefore
result in large idle times waiting for nodes to synchronize. For such applications the
Mercury operating system was developed which allows messages to be queued in an
incoming buffer and then read as needed and likewise to be queued in an outgoing buffer
and sent when the message is complete. The application program can flow freely between
the two styles of communication. The measured throughput rate of CrOS messages is 2
megabytes per second per channel with a node capable of communicating on all of its
channels simultaneously. The throughput rate for Mercury is 0.5 megabytes per second.

The Mark I11 Hypercube supports both the C and FORTRAN programming
languages. An operating system entitled "Time Warp" has been developed to support
discrete event simulations. Relatively little effort has been applied to this date to
incorporate symbolic languages on the hypercube. There has, however, been some work
on a version of distributed Prolog and a Lisp interpreter.

D. NEW DEVELOPMENTS

The fact that the Mark I11 Hypercube continues to evolve to respond to the needs of
the user community is apparent in some of the newest developments. The addition of a
memory management unit (MMU) which will enable such capabilities as multi-processing
and virtual memory on a node is near completion. Global buffer boards which attach a
subset of the nodes to the back plane allow the user to reset a portion of the hypercube (a
"sub-cube") and to load in new executable code and data to a particular sub-cube of the
hypercube. Both of these capabilities become particularly important as the hypercube is
expanded to larger configurations.

One of the newest developments which has recently become available is the ability
to attach external devices to the nodes. A Concurrent Input/Output (CIO) interface board

2-3

was developed which interfaces the node to a VME-compatible peripheral device. This
CIO board has a Motorola 68020 CPU and 2 megabytes of memory. The current board
design has four communication channels, which permits it to be configured in a 3-
dimensional CIO communication hypercube, leaving one channel to interface directly to an
application hypercube node. Future board layouts are anticipated to include additional
channels in the expectation that some applications may actually require one device per node
(e.g., databases). With a CIO interface attached to each node, nodes then could access
information on the disk drives via the CIO communication hypercube without using any
application hypercube communication channels (Figure 2.2). A prototype CIO system
became available in June, 1988 with 4 disk drives attached to a 32-node hypercube--one
drive per 8-node sub-cube. The addition of disk drives to nodes is essential for the
electromagnetics application. It will permit the solution of even larger problems as well as
saving partial solutions for later use (see Section IV.C.5.c).

Connection:
Mark I11 nodes 0, 8, 16, 24
to CIO nodes 0, 1 ,2 ,3 ,
respectively

CIO Hypercube
doc = 2

Mark III Hypercube
doc = 5

/

0
0
0
0

Four 380 Mbyte
Winchesters

Figure 2.2. Prototype hypercube Concurrent I/O system

2-4

SECTION 111

THE FINITE DIFFERENCE TIME DOMAIN CODE

A. INTRODUCTION

Electromagnetic fields interacting with a dielectric or conducting structure produce
scattered electromagnetic fields. To model the fields produced by complicated, volumetric
structures, the finite difference time domain (FDTD) method employs an iterative solution
to Maxwell's time-dependent curl equations. Because FDTD tracks the evolution of
scattered fields in time, the method naturally lends itself to problems involving transient
fields. K. Yee's work on FDTD considered such applications [3-31. A. Taflove and his
colleagues at Northwestern University applied the method to the determination of steady
state fields and the calculation for radar cross sections (RCSs) [3-41. Describing the use of
FDTD for calculating steady state fields and RCSs on the Mark I11 Hypercube is the
purpose of this section.

Several sequential FDTD codes exist. Converting a FDTD code from Lawrence
Livermore National Laboratory (LLNL) was our first attempt at producing a parallel FDTD
code [3-11. The modular form and straightforward coding of this program greatly eased
the task of parallel decomposition. However, the LLNL staff designed the code for the
analysis of transient currents. Taflove provided us with a copy of his FDTD code along
with a report describing the FDTD method and its applications to RCS studies [3-21. We
added to our code the features required to make an RCS code with similar capabilities to
Taflove's code's. At this point, references to the FDTD code describes our parallel
implementation of the finite difference time domain method.

The goal of the FDTD code is to track the propagation of an incident
electromagnetic wave into a volume of space containing a dielectric or conducting structure
and observe the wave's interaction with the scattering object. Wave tracking ends when
sinusoidal steady state behavior occurs at each lattice cell or after a sufficient number of
cycles of the incident field. A nonfluctuating value for the monostatic RCS examined after
every cycle of the incident field is a more practical convergence criterion.

3- 1

FDTD uses a finite difference approximation, in rectangular coordinates, to
Maxwell's curl equations to explicitly solve for the fields at the current time. This iteration
scheme replaces the need for a simultaneous solution for all field components [3-31. We
envision the discretization of Maxwell's curl equations with a three-dimensional discrete
lattice in space and a discrete time step.

We model the scattering object by embedding the object in the discrete lattice. The
relative permittivity, E, relative permeability, p, electric conductivity, 0, and magnetic
conductivity, om mathematically describe the object. These parameters can be tensors
which are functions of space. We do not consider the case where the material parameters
are functions of time. We assign discrete values of these parameters to points on the
discrete lattice to specify the scattering object.

The parallel implementation of FDTD divides the global lattice of discrete field
components into blocks of nearly equal dimensions. The code assigns neighboring blocks

to nodes directly connected by communication channels. This decomposition scheme
assures that each node can perform its field updates with resident information and
information communicated by neighboring nodes. This code allows us to solve problems
requiring as many as 2,048,000 unit cells on a 32-node Hypercube. For smaller problems,
the code produces solutions in a fraction of the time required to solve the same problems on
sequential computers.

We compare the results from the parallel FDTD code using a variety of other
analysis codes. We compare the reported current on the surface of a perfectly conducting
cube with results from a finite difference code obtained from Taflove [3-21. We also use
the FDTD code and the Taflove code to examine the RCS from a dielectric flat plate
scatterer. In the test case section of this report, Section VI, we compare the FDTD code
with the Numerical Electromagnetics Code (NEC) [3-71 and a code computing the analytic
solution. In this section we find the near scattered field and the bistatic RCS.

B . GENERALTHEORY

The equations governing the interaction of electromagnetic radiation with
anisotropic dielectric or conducting structures are Maxwell's curl equations (3.1 and 3.2).

3-2

8-b

P

E

(3.1)

+ 8-b + --c +
D = E E J = o E

The tensors 1, om, E, and (T determine the properties of the scattering object. The FDTD
code implements the special case in which these tensors only contain nonzero entries along
the diagonal. p(x,y,z) is the permeability tensor at coordinates (x,y,z). om is the magnetic
conductivity. E is the permittivity. o is the electric conductivity. B, H, Jm, D, E, and J are
the usual electromagnetic field quantities: magnetic induction, magnetic field, magnetic
current, electric displacement, electric field, and electric current.

From the differential equations, we construct six finite difference equations by first
expressing equations 3.1 and 3.2 as separate scalar equations in rectangular coordinates.
Next, we employ two-point central differencing in both spatial and temporal coordinates to
discretize the scalar equations. References [3-11 and [3-21 discuss the mathematical details.
The following equation 3.3 is the finite difference equation for the x component of the
magnetic field. Equation 3.4 is the finite difference equation of the x component of the
electric field. The finite difference equation for the other four components have a similar
form.

-
pl l (i,j+1/2,k+1/2) H;+lI2(i,j+1/2,k+1/2) =

*
N

(3.3)
n-1/2 p l l (i,j+1/2,k+1/2) H x (i,j+1/2,k+1/2)

n E;(ij+l@,k+l) - E;(ij+l/2,k) E:(ij,k+l/2 - E,(ij+l,k+1/2 1 + +
Az AY

0 . *
m11 - - - P l l

P11'-
- P11
P11'- +-

At 2 At 2

3-3

-
& l l (i+l/2,j,k) E:(i+1/2,j,k) =

&11(i+l/2,j,k E, (i+l/2j ,k

* - n- 1

H;-’l2(i+1/2j+1/2,k) - H;-”(i+1/2j-l/2,k)
+

AY
n-1/2 HY-”*(i+1/2,j,k-1/2) - H, (i+1/2,j,k+1/2) +

Az
* - E11 0 1 1 - E11 0 1 1

Ell’-- - - E l l = - f-

At 2 At 2

(3.4)

I, j, or k indexes the edges of unit cells. Superscripts on the field components index the
discrete time steps. Ay and Az indicate the discrete increments in the y and z directions. At
indicates the time step increment per iteration. Other subscripted quantities are tensor

elements of p, 0,. E , or B. To obtain accurate results, the size of the unit cell (Figure
3.1), the spatial finite difference step, must be a small fraction of the electrical size of the
scatterer [3-21. Once we specify the unit cell size, we determine the time step by the
Courant stability condition [3-41.

FDTD constructs a lattice in coordinate space from several unit cells. The discrete
electric field components, Ex, Ey, and Ez, lie on the edges of each unit cell. For example,
Ex lies on the midpoint of edges in the x direction. The discrete magnetic field
components, Hx, Hy, and HZ, occur on the centers of faces of each unit cell. For
example, Hx lies on the center of faces perpendicular to the x direction. At discrete electric
field locations, FDTD assigns permittivity and electric conductivity. At discrete magnetic
field locations, FDTD assigns permeability and magnetic conductivity [3-31.

The finite difference form of Maxwell’s curl equations determines the spatial and
temporal update of the discrete field components on the lattice. At time nAt, the magnetic
fields, on cell faces and at half a time step back, update neighboring electric field
components on cell edges. For example, FDTD uses Hy and HZ components to update Ex
components. FDTD then increments time by half the time step, A t . At time (n+1/2)At, the
new electric field components on cell edges update neighboring magnetic field components
on cell centers. FDTD then increments time again by half of At. This process continues

3-4

Y

Figure 3.1. Electric and magnetic field components in a typical unit cell

until the discrete field components have constant maximum amplitudes and constant phase
relative to a fixed iteration number [3-21. Another check for convergence is nonfluctuation
in the monostatic RCS after each cycle of the incident field.

Equations 3.1 and 3.2 give the relationship between total field components.
Equations 3.3 and 3.4 give examples of updating total field components at each time step
iteration. However, we can also write Maxwell's equations using scattered and incident
electromagnetic field components. Starting with this set of equations, the finite difference
algorithm would update the entire lattice in scattered fields. Before the introduction of
second-order-correct radiation boundary conditions and RCS calculations, the FDTD code
used the scattered-field update method. We describe radiation conditions and RCS
calculations in following paragraphs. However, for several reasons, we choose to use the
total-field update method near the scattering object and the scattered-field method near the
truncation planes. The two update schemes require an interface region where the incident
field adds to the scattered field. Taflove's report describes this update scheme in great
detail [3-21. This report best states the reasons for the use of this mixed update method:
"(a) The high-dynamic-range, total-field formalism is retained for the entirety of the
interacting structure, permitting accurate computations of low-level fields penetrating into
cavities through apertures, and into shadow regions. (b) The scattered-field formalism is
retained for the lattice truncation region, permitting a very accurate simulation of the
radiation condition. (c) The incident wave contribution need be computed or stored only
for the field components at the rectangular surface connecting regions 1 [total field region]
and 2 [scattered field region]. This results in much less computation or storage than if the
incident field were to be computed at all points within the interacting structure to implement
a pure scattered field formalism. (d) The scattered near field in Region 2 can be easily
integrated to derive the far-field scattering and radar cross section I '

3-5

C . RADIATION BOUNDARY CONDITIONS

The computation lattice cannot extend infinitely in all directions due to memory and
computation time limitations. Therefore, we truncate the computation lattice. At the lattice
boundary we cannot use the FDTD method to update field values, because the method
requires points outside the lattice. Therefore, we apply a radiation condition to the scattered
electric fields at the lattice truncation planes to simulate an infinite lattice. We need not
apply a radiation condition to the discrete magnetic field components because these field
components do not occur on the truncation planes. Formulas for first and second order
radiation conditions, which contain first and second derivatives in space and time, and their
corresponding central difference expressions are given in reference [3-51. A discussion of
the derivation of radiation conditions from the scalar wave equation is given in reference
[3-61.

The application of second-order-correct radiation boundary conditions at the
truncation planes require the scattered electric fields. However, equations 3.1 to 3.4 are
total field equations. According to the Taflove method, we use an interface surface on the
computation lattice to separate the region of total electric and magnetic fields and the region
of scattered fields [3-21. This surface is arbitrarily set to three cells in from the truncation
planes in all directions. We also introduce the incident electromagnetic field on this
interface surface. This method computes the total fields in the region of the scattering
object.

Figure 3.2 illustrates the update of an x component of the scattered electric field on
a truncation plane perpendicular to the y axis and with normal vector in the positive y
direction. We label this point with the number 1. We cut a section perpendicular to the x
axis to illustrate the update of point 1 . To update point 1 at time nAt, second order correct
radiation boundary conditions need the value of the scattered electric field at points 1 and 2
at time 2At back and time At back. These conditions also require the value of the field
points 3 to 10 at time At back.

Equation 3.5 gives the update equations for electric field points on the truncation
plane shown in Figure 3.2. The variable n is the current time step index. I and k are
discrete field indices in the x and z directions. Nyc is the number of cells in the y direction.
At is the discrete time step. Ax, Ay, and Az are the discrete spatial increments in the x, y,
and z directions. Similar equations exist for the discrete x component of the electric field
on truncation planes perpendicular to the z direction, for the discrete y component of the

3-6

Exs
e Hys
0 Hzs

Figure 3.2. Exs points 2 to 10 update Exs point 1 on a truncation plane
perpendicular to the y axis

electric field on truncation planes perpendicular to the x and z directions, and for the
discrete z component of the electric field on truncation planes perpendicular to x and y
directions.

n-2 E: (i,nyc+l,k) = E, (i,nyc,k)

1 n-2 + At - [E: (i,nyc,k) + E, (i,nyc+l,k)
cAt+Ay

1 + [E:-' (i,nyc,k) + E:-' (i,nyc+l,k)
cAt+Ay

n- 1 + AY (c At) [E:-' (i+l,nyc+l,k) - 2 E, (i,nyc+l,k)
2

2 (Ax) (c At + Ay) (3.5)

+ E:-'

+

+ E:-'

n- 1
(i-l,nyc+l,k) + E:-' (i+l,nyc,k) - 2 E:-' (i,nyc,k) + E,

AY (c At) - 2 E:-' (i,nyc
2

2 (Az) (c At + Ay)

(i,nyc+l,k-1) + E:-' (i,nyc,k+l) - 2 E, (i,nyc,k) + E, n- 1 n- 1

D. RADAR CROSS SECTION

I (i- 1 ,nyc,k)

1 (i,nyc,k- 1)

Radar cross section (RCS) calculations require steady state far fields. However,

3-7

the FDTD code tracks the time evolution of the near fields. Therefore, the FDTD code
incorporates magnitude and phase calculations for sinusoidal steady state near fields and
near to far field transformations in order to calculate RCS.

The code evaluates the steady state magnitude and phase in the following manner.
The FDTD algorithm marches in time through several cycles of the incident field. After
several cycles, the fields reach steady state. The code then monitors the peaks and valleys
of the sinusoidally varying waveform by computing the first and second time derivatives.
The code monitors only the electric and magnetic fields on an integration surface. The
integration surface is one cell further out than the scattered field interface surface (1II.C).
The code computes the magnitudes as one half the difference between peak and valley
amplitudes. It computes the phase by recording the time step number at which a peak
occurs and subtracting from a reference time step number. The FDTD code converts the
resulting time difference to radians by multiplication with the incident field angular
frequency.

The following equations describe the RCS calculations. Equation 3.6 illustrates the
computation of the RCS, 0.

Equations 3.7 and 3.8 give the expressions for the far field Ee and E+ used in equation 3.6.

EO= -ikoqo(Axcos 8 cos @ + Aycos 8 sin @ - A,sin 8

+ q0 (-Fx sin @ + F, cos @)) -1 (3.7)

Equations 3.9 and 3.10 give the magnetic and electric vector potentials that appear in
equations 3.7 and 3.8.

3-8

- ik,r

4nr
ds e A - -b /[(Gxfis)e i k O " C o S c

F=- e- ikor (((- n x E --. -') e ik,r'cosc ds
4

(3.9)

(3.10)

The variables in the above equations are the following: r is the distance of the
observation point, r' is the distance of the source point, k, is the wave number of the
incident field, qo equals 376.7303 ohms, 0 and Cp are the angles of the observation point,
and the ES and HS vectors are the complex fields obtained from magnitude and phase
evaluations on the integration planes. The integration is over a cubic surface surrounding a
volume containing the scatterer. The vector n is the unit outward normal on this surface.

The mathematical details of the near to far field transformations, as well as a more
in-depth discussion of the second-order radiation condition and the magnitude and phase
computation, are found in reference [3-21.

E. PARALLEL DECOMPOSITION

The FDTD code uses a spatial decomposition of the lattice of unit cells. The FDTD
program fills the computation space with several unit cells. It then divides this global lattice
into blocks of nearly equal dimensions. The FDTD code assigns neighboring blocks of the
global lattice to hypercube nodes directly connected by communication channels. This

decomposition scheme assures that each node can perform its discrete field updates,
described in section 1II.B above, with resident information and information communicated
by neighboring nodes.

I . Update of Discrete Field Components on the Computation Lattice

We illustrate the update of field components within the volume of the
computation lattice by considering a 7 x 7 x 7 unit cell lattice. Figures 3.3 and 3.4 show the
decomposition of this small-lattice. In this example, the FDTD code uses four

3-9

Node 2 Node 3

4
0

_I

_.

'0 -

_.

0

J

7
8

@

7
Q

_.

f

Node 0 Node 1

0 Ex

HY
o Hz

Figure 3.3. The decomposition of the global lattice among four nodes of
the hypercube, in which the black arrows symbolize the
magnetic field components used to update the Ex component
within nodes and between the boundaries of nodes

nodes of the hypercube. It assigns a 7 x 4 x 4 cell block to node 0, a 7 x 3 x 4 cell block to
node 1, a 7 x 4 x 3 cell block to node 2, and a 7 x 3 x 3 cell block to node 3. Both figures
show a cut in a plane perpendicular to the x axis. In this example, there are seven such
planes along the x direction. For eight active nodes, the program will divide the global
lattice in the x direction. The code will assign four cells in the x direction to the nodes
responsible for negative x values and three cells in the x direction to the nodes responsible
for positive x values.

3-10

Node 2
0

e

0

e

0

B)

0

0

a

0 t"
Z" Node 0 0

Node 3

e o e o Q .

Node 1

Figure 3.4. The decomposition of the global lattice among four nodes of
the hypercube, in which the black arrows symbolize the
electric field components used to update the H, component
within nodes and between the boundaries of nodes

Figure 3.3 illustrates the update of the x component of the electric field, Ex. To
update the discrete values of E, on the lattice, FDTD requires the value of E, at the

previous time step, the values of neighboring Hy and H, discrete fields at half a time step
back, and the values and oll. Refer to the finite difference equation 3.4. For an Ex
component in the middle of a block assigned to a particular node, the update is the same as
in the sequential case. For an E, component on a boundary between nodes, neighboring
nodes must communicate before the update. The black arrows pointing to a central Ex
component illustrate the two types of updates that can occur within node 3.

The parallel FDTD code updates Ey and E, components in a similar manner. For
these components we can construct illustrations similar to Figure 3.3 for cuts perpendicular
to the y and z planes.

3-1 1

Figure 3.4 illustrates the update of the x component of the magnetic field, H,. To
update the discrete values of Hx on the lattice, the FDTD code requires the value of Hx at
the previous time step, the values of neighboring E,, and E, discrete fields at half a time step
back and the values p1 and oml Refer to the finite difference equation 3.3. For an H,
component in the middle of a block assigned to a particular node, the update is the same as
in the sequential case. For an Hx component on a boundary between nodes, neighboring
nodes must communicate before the update. The black arrows pointing to a central H,
component illustrate the two types of updates that can occur within node 0.

The parallel FDTD code updates H, and H, components in a similar manner. For
these components we can construct illustrations similar to Figure 3.4 for cuts perpendicular
to the y and z planes.

2. Update of Discrete Field Components on the Truncation Planes

Second-order-correct radiation boundary conditions work well with the
spatial decomposition of the global lattice. A processor responsible for field points on the
truncation planes, the planes marking the boundary of the computation lattice, has enough
resident and communicated field information to update truncation plane points using
second-order-correct radiation conditions.

Refer back to the example illustrated in Figure 3.2. If any of the points 3 to 10
reside in neighboring nodes, the node containing point 1 must communicate with its
neighbors before the update occurs.

3. Radar Cross Section Calculation

The spatial decomposition of the global lattice also works well for
calculating the radar cross section, RCS. Several nodes in the hypercube contribute to the
integration that yields the electric and magnetic vector potentials (equations 3.9 and 3.10).
The FDTD code combines the local contributions to these potentials to calculate E, and E$
(equations 3.7 and 3.8). These globally accumulated field values contribute to give the
RCS, o (equation 3.6).

3-12

RCS calculations depend on the magnitude and phase of discrete field components
on an integration surface. The FDTD code uses a cubic surface surrounding the scattering
object as the integration surface [3-21. Portions of the cubic integration surface reside in
different nodes. The program obtains the magnitude of field components on this
integration surface by recording the peak and valley of the steady state sinusoidal wave
forms. When a peak occurs, the program also records the time step. From this time step
information, the time step increment At, and the angular frequency of the incident field, the
program calculates the phase relative to a reference time step.

F. PERFORMANCE OF THE FDTD CODE ON THE HYPERCUBE

To analyze the performance of the FDTD code, we identify the computing intensive
parts of the program. FDTD contains input/output, initialization, and setup subroutines.
However, the time step iteration loop, in which the program performs field updates,
radiation boundary condition updates, internode communication, and magnitude and phase
tracking, comprises almost all of the execution time.

One method of efficiency measurement fixes the number of unit cells in each node
while increasing the number of active nodes. If the code were 100% efficient and if the
number of active nodes increases by a factor N, the execution time of the code should
remain constant because the total computational load also increases by a factor N.
However, the time may not remain constant because of the added internode
communication. Note that, with each increase in the number of active processors, FDTD
solves a different problem because the global lattice size increases.

We concentrate on the various components of the iteration loop and give results for
this method of efficiency measurement.

Figure 3.5 shows four sets of timing runs. The horizontal axis indicates the
number of active processors, 1, 2,4, 8, 16, or 32. The vertical axis shows the execution
time in milliseconds. Hollow squares indicate the maximum reported internode
communication time per iteration. Because nodes responsible for the truncation planes of
the global lattice may communicate less, nodes report distinct internode communication
time. Hollow triangles indicate the maximum reported time per iteration to perform second-
order-correct radiation boundary updates. Filled squares indicate the maximum reported
time per iteration to perform electric and magnetic field updates within the volume of the

3-13

-,-

-4ooOo: u
%

8 Update Fields
A Boundaries
0 Communication
0 Mag. and Phase
A TotalTime

A A

8 E
t A A A

8
.E E

1000 Unit Cells Per Processor 8000 Unit Cells Per Processor

I A A
lo00

A

0
.3 c
g2ooOo1
c

~ l o o 0 0 , .3

6

4

I - . I - - - - . I _ I

"6 10 20 30 40

A A

8 8 E
.D

4000 i

2000 1
P A A A A A

0. . . I I .e..
0 10 20 30 40 0

Number of Processors Number of Processors

27000 Unit Cells Per Processor

A 20000 A

Number of Processors Number of Processors
0

Figure 3.5. Four sets of timing runs for a fixed number of unit cells per
node of the hypercube

3-14

computation lattice. Diamonds indicate the maximum reported time per iteration to perform
magnitude and phase tracking on the integration surface. Lastly, filled triangles indicate the
maximum reported total time per iteration. We used lOOO, 8000,27,000, and 64,OOO unit
cells per node.

The various components of the iteration loop predictably follow certain trends. The
communication time per iteration increases with the number of processors. We expect this
increase because as the number of processors increases, a given node has more neighbors
with which to exchange information. However, the communication time is a small fraction
of the total time per iteration and is a small fraction of the time per iteration to perform field
updates.

The communication time should hit an upper limit for a given density of cells per
node because a node can communicate in, at most, six directions for the three-dimensional
FDTD method and because the amount of communicated information in a given direction
remains constant for a fixed density. The existence of this upper limit is possible if nodes
do not wait while other nodes in the configuration communicate. All nodes involved in a
communication step should first write a packet of information, read the packet sent by its
neighbor, and then continue to send and read additional packets. The current version of
FDTD does not have this communication scheme.

As the number of nodes increases, the time per iteration to perform radiation
boundary updates decreases for processor configurations of 2,4,8, and 16. For 32 active
processors, the time per iteration increases from the time reported for 16 processors. As
the number of processors increases, there are two conflicting influences on the time to
perform radiation boundary updates. Although the number of unit cells remains constant in
each node as we increase the number of nodes, FDTD still breaks up the truncation planes
among the processors on the periphery of the global lattice. This division is the reason for
the decreased times in 2, 4, 8, and 16 nodes. Second-order boundary condition updates
also require internode communication. This communication is the reason for the increased
time in 32 nodes.

There is a slight increase in the time per iteration for field updates as the number of
processors increases. As the number of processors increases, some perform less boundary
condition updates. Because the number of cells remains constant, these nodes must now
perform additional field updates within the volume of the computation lattice.

3-15

For a fixed density of cells per processor, the four plots indicate that these
competing times result in a faster total execution time per iteration in 4,8, 16 and 32 nodes
when compared with that for 1 and 2 nodes. Internode communication has minimal effects
on the total execution time for problems saturating the capacity of each active node. With
the above mentioned improvements in internode communication, this efficiency should
remain high for arbitrarily large node configurations.

The parallel finite difference code performs well on the Mark 111 Hypercube. The
efficiency for a fixed global lattice size from 1 to 32 nodes is approximately 80%. The
efficiency for a fixed number of unit cells per node from 1 to 32 nodes is above 90%.

There does not exist a sequential version of the FDTD code. However, for those
individuals interested in a comparison between sequential and parallel execution times for
codes using the FDTD method, we compare two codes, Taflove's sequential code and the
parallel FDTD code, of comparable capabilities. Taflove's sequential code is optimized
because it makes no subroutine or function calls within the body of the iteration loop and
explicitly uses an incident plane wave excitation. However, the parallel FDTD code makes
several subroutine calls within the body of the iteration loop, including calls to functions
which allow the user to specify the form of the incident field. For the conducting cube
case, presented in the next section, the parallel code on the Mark I11 Hypercube runs
approximately 22.7 times faster than Taflove's code on a VAX/750 and 8.8 times faster
than Taflove's code on a VAX/785. Both VAX times are total CPU usage.

G. RESULTS FOR DIFFERENT SCATTERERS

To test the validity of the results from the FDTD code, we compare the program's
reported currents on the surface of a perfectly conducting cube with the results on page 163
of reference [3-21.

We illustrate the scattering object in Figure 3.6. The scattering object is a perfectly
conducting cube in vacuum. The cube is one meter in each direction. The unit cell size is
0.05 x 0.05 x 0.05 m. The computation lattice size is 2 x 2 x 2 m. The total number of
cells is 40 x 40 x 40. The wave number times the length of a cube side, ks, equals 2. A
plane wave is incident on the cube's front face. The direction of propagation of this plane
wave is the +y direction. The electric field is polarized in the z direction with magnitude
1 V/m. The magnetic field is polarized in the x direction with magnitude

3-16

m.

Figure 3.6. The perfectly conducting cube scatterer. The paths for evaluating the currents
on the surface are bold. Arrows indicate the polarization and direction of the
incident plane wave.

1/376.73 ampere/m. The frequency is 95.43 MHz. The wavelength is 3.141593 m. The
number of iterations is 630 time steps with a time increment of 83.39 x seconds.

In Figure 3.7, we evaluate the currents on the surface of the perfectly conducting
cube scatterer. We used Taflove's sequential FDTD code and plotted the results as hollow
squares. We ran the parallel FDTD code and plotted the results as plus marks (+). The top
two plots show the magnitude and phase of the x component of the current on the bottom
path for the perfectly conducting cube scatterer. The last two plots show the magnitude and
phase of the z component of the current on the side path. The horizontal axes indicate
observation points taken at intervals of 0.05 m on the current path. The vertical axes
indicate either the normalized current or the phase. The Taflove and the FDTD numbers
agree well.

2 Along with the currents, we found a monostatic radar cross section of 2.14 m
from the Taflove code and 2.1 1 m2 from the parallel FDTD code.

We also scattered a plane wave from a anisotropic flat plate scatterer according to
the parameters specified in reference [3-21. The plate is 0.1 x 0.00625 x 0.3 m. The unit
cell size is 0.00625 x 0.00625 x 0.00625 m. The computation lattice size is 0.2 x 0.1 125 x
0.4 m. The total number of cells is 32 x 18 x 64. The plate has a relative permittivity equal
to 1 in the z direction and 40 in the x and y directions. It has an electric conductivity of
3.72 x 107 mholm in the z direction and 28 mho/m in the x and y directions. A plane wave
is incident in the plus y direction. The frequency is 1.0 GHz. Each time step increments
the time by 10.42 x seconds.

3-17

Magnitude of X Component
of Current

1 -

Observation Points Along Path

P

z
2-&m a

Magnitude of Z Component
of Current

3 P I

Phase of X Component
of Current

n -100 t

Observation Points Along Path

Phase of Z Component
of Current

t I

0

10 20 30 40 50
- 1 6 0 c) . I I ' I a I '

Observation Points Along Path
OC, - 10 I - 20 I - 30 ' - 40 50 '

Observation Points Along Path

Figure 3.7. The magnitude and phase for the x component of the current
on the path below the cube scatterer (top), and the magnitude
and phase for the z component of the current on the side path
of the cube scatterer (bottom)

We also obtained a monostatic radar cross section of 1.94 m2 from the Taflove code
at iteration 576 and 1.90 m2 from the parallel FDTD code at iteration 576. However,
according to Figure 3.8, the near fields have not completely reached steady state. This
figure shows the monostatic RCS as a function of the iteration count for the flat plate
scatterer.

3-18

H . CONCLUSIONS

One can code the FDTD method on the hypercube very efficiently. In the particular
parallel implementation described above, communication is only between neighboring
processors resulting in low communication time compared with computations occurring in
the iteration loop. The large memory available on the hypercube and the ability to scale the
number of hypercube nodes allow the solution of electrically large three-dimensional
anisotropic scatterers.

a
.r(8

8

e?.
Y
0
9)
v3
m m

2
2
p:

Figure 3.8.

0.0 *
0 lo00 2000

Iteration Number

Monostatic RCS versus iteration count for the flat plate
scatterer. We use this plot to check the progress of the near
fields towards steady state.

3-19

REFERENCES

[3-11

[3-21

13-31

13-41

[3-51

[3-6

[3-7

K. S. Kunz, "Generalized Three-Dimensional Experimental Lightning Code
(G3DXL) User's Manual," Kunz Associates, Inc., Albuquerque, NM, February
1986.

K. R. Umashankar and A. Taflove, "Analytical Models for Electromagnetic
Scattering, Part II: Finite Difference Time Domain Developments," Final Report on
IITRI Project E06538, Electronics Department, IIT Research Institute, Chicago, IL,
June 1984.

K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving
Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas ProD., Vol. AP-
14, May 1966, pp. 302-307.

A. Taflove and M. E. Brodwin, "Numerical Solution of Steady-State
Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's
Equations," IEEE Trans. Microwave Theorv Tech., Vol. MTT-23, August 1975,
pp. 623-630.

G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation
of the Time-Domain Electromagnetic-Field Equations," IEEE Trans. on
Electromametic Compatibility, Vol. EMC-23, November 198 1, pp. 377-382.

B. Engquist and A. Majda, "Absorbing Boundary Conditions for the Numerical
Simulation of Waves," Math Comu., Vol. 3 1, July 1977, pp. 629-65 1.

G. J. Burke and A. J. Poggio, Numerical Electromagnetics - Code (NEC) - Method
of Moments, Lawrence Livermore National Laboratory, Livermore, CA, 198 I.

3-20

SECTION IV

THE FREQUENCY DOMAIN METHOD OF MOMENTS CODE

A. INTRODUCTION

The Numerical Electromagnetics Code (NEC-2), developed at Lawrence Livermore
National Laboratory (LLNL), is used for the analysis of the electromagnetic response of
antennas and other metallic structures. This code computes the induced currents on
structures modeled by small wires or surface patches. Other near-field quantities such as
electric or magnetic fields, as well as radiated fields, are evaluated from the solution of the
induced currents. The code combines an integral equation for smooth surfaces with one
specialized for wires to model a wide range of structures. By using the method of
moments, the integral equations are reduced to a matrix equation. The solution of the
matrix equation is then used for evaluation of the currents on wire segments and surface
patches. The numerical solution requires a matrix equation of increasing order as the
structure size is increased relative to the wavelength of the incident field. Although there
are no theoretical size limitations, modeling of structures with dimensions more than
several wavelengths is impractical on conventional computers due to limitations in memory
or excessive computing time. This makes the NEC program a very good candidate for
conversion to the hypercube. On the hypercube, the fast parallel algorithm and large
memory can extend the limits of NEC many times beyond conventional computers.

The LLNL NEC-2 is a large FORTRAN code containing 77 subroutines and many
features such as:

- Computation of scattered or radiated electromagnetic fields from structures
modeled by wires and surface patches

- Effects of perfect or lossy ground

- Modeling thick wires using an extended thin wire kernel

- Modeling of loaded structures (including imperfect conductors)

- Numerical Green's function

- Modeling non-radiating networks

4- 1

In the parallel NEC code, all features of the sequential NEC are being incorporated
except the modeling of lossy ground and non-radiating networks.

B. GENEWTHEORY AND ALGORITHMS

The detailed description of the theory of the NEC-2 method of moments is given in
Reference [4-11. In the following sections, that theory is discussed in more general terms
without any attempt to cover the details.

The NEC Program uses both an electric-field integral equation and a magnetic-field
integral equation to model the electromagnetic response of general metallic structures.
These integral equations follow the form of an integral representation for the electric field of
a volume current distribution or the magnetic field of a surface current distribution,
respectively. Using these equations and the boundary condition equations on the surface
results in a general integral equation where the unknowns are the longitudinal currents on
wire segments and the two perpendicular components of the surface current on patches.
These equations can be expressed in terms of a general linear operator as:

L ? = E (4- 1)
where

L is the linear operator consisting of integral and differential operators,
I is the current on the structure, and
E represents the excitation to the system such as a voltage source or an incident
field.

In the NEC program, the operator equation (4-1) is solved by a moments method in
which the weighting functions, q , are delta functions:

where
-
r is the integration variable representing a point on the surface of the structure, and

ri is the location of the center of a wire segment or a patch.
-

4-2

The choice of the weighting function makes this a point matching technique. The current
basis functions are defined separately for wires and patches.

For M number of patches, the basis functions are simple pulse functions,

where

I! (r) = 1 for r on patch j and zero otherwise.

The total current on patches can be expressed as

j= 1 j= 1

For N number of wires, the basis function is expanded into three terms: a constant,
a sine, and a cosine. For segment j the basis function is represented by:

(4-5) - - - - w - I, (r) = a j + b j s i n k (r - r ,) + c j c o s k (r - r ,) , j = 1 , ..., N

where
-
rj is the location of the center of segment j,
k is the free space wave number, and
aj, bj, and Cj are constants.

It is assumed that this basis function has a peak on segment j and goes to zero at the other
end of the segments connected to segment j (Figure 4.1).

4-3

W I .
6

I
6 - 1

SEGMENT &

Figure 4.1. The jth basis function for wires

Using the local continuity condition of charge and current, two of the three
constants in each basis function are eliminated and the total current can be expressed as:

j=l

where
Fj represents the remaining constants.

Combining the current expansion for patches and wires we get:

N+2M

j=l

...-
I (r) = C F~ I ~ (;)

where
W P
J J Ij represents either I. or 1. .

(4-6)

(4-7)

A set of equations is obtained by taking the inner product of equation (4-1) with the
set of weighting functions in equation (4-2), Oi :

(ai, L i) = (ai , E) (4-8)

Due to the linearity of the operator L, substitution for I yields:

4-4

In matrix form equation (4-9) can be written as:

[AI [FI = [El (4- 10)

where
[A] in general is a (N+2M) * (N+2M) matrix called the "interaction matrix,"
[Fl is a (N+2M) * 1 array of basis function amplitudes,
[E] is a (N+2M) * 1 array of excitation at the center of wire segments and patches.

In the parallel NEC program, the matrix A is factored by one of two techniques:
1) the Householder transformation, which results in an upper triangular matrix, or
2) Gaussian elimination, which results in a lower/upper pair of triangular matrices.
Depending on the factorization method selected, either back substitution (for Householder
transformation) or both back and forward substitution (for Gaussian elimination) are used
to compute the amplitudes of the basis functions.

For structures having N wire segments and M surface patches, equation (4-10) can
be written as:

= [:: 3 (4-1 1)

where
Fw and F, are basis function amplitudes for wires and patches, respectively.
E, and H, are the electric fields at the center of wire segments and the magnetic
fields at the center of surface patches, respectively.

The interaction matrix is now divided into 4 submatrices a, b, c, and d. A matrix
element aij in submatrix a represents the electric field at the center of segment i due to the j*
segment's basis function centered on segment j. A matrix element dkl in submatrix d
represents a tangential magnetic field component at patch k due to a surface-current pulse
on patch 1. Matrix elements in submatrices b and c represent electric fields due to surface-
current pulses and magnetic fields due to segment basis functions, respectively.

4-5

Y

t

Figure 4.2. Two examples of symmetry: (a) coaxial rings (cylindrical
symmetry); (b) a rhombic antenna (plane symmetry)

For problems where the structure to be analyzed has cylindrical symmetry, or
planes of symmetry such as the one shown in Figure 4.2, the computation time can be
reduced significantly.

In a case where there are 1 symmetric cells in the structure, equation 4-10 can be
written as:

4-6

A2

A2

A1

A1

A3

A2 4 - 2 Al-1

A1 4 - 3 Al-2

A3 4 - 1 A1

i . 1 A4 A1 AI

I

F1

F2

F3

F l

I

El

E2

E3

El

(4- 12)

where now each submatrix Ai is of dimension NPEQ = (N+ 2M'), where N' and M are
the number of wire segments and surface patches in each symmetric cell. This would
reduce the time to fill the interaction matrix by a factor of 1/1 . It can also be shown that by
taking discrete Fourier transforms of equation (4-12), it can be solved by factoring 1
matrices of order NPEQ instead of one matrix of order 1 "NPEQ. This would reduce the
factor time by 1/1 and the solution (forward and back substitution or back substitution,
depending on the factoring technique used) time by about 1/Z. The time to compute Fourier
transforms is generally small compared to the time for matrix operations. Symmetry also
reduces the number of locations required for matrix storage by 1/1 since only the first row
of submatrices needs to be stored.

In the NEC-2 program, the current of each wire segment can be approximated either
by a thin wire kernel or by an extended thin wire kernel. In the thin wire approximation,
the segment current is represented by a current filament. This limits the use of the thin wire
models to

A
- > 8 a

where
A = the length of each segment, and

a = the radius of each segment.

With the extended thin wire approximation, the segment current is represented by a current
tube which can be used for models with

A
- > 2 a

4-7

Another important feature of the NEC-2 program is its capability to model
structures with lumped or distributed loads, which includes modeling with lossy wires.
This is accomplished by a simple modification to the boundary condition equation. For
unloaded structures, the general boundary equation is:

where
A

n is the normal vector to the structure, and
Es and E1 are the scattered and incident fields, respectively.

For loaded structures, this equation is modified as follows:

h - - s -
n (r) * [E (r) + E'(;)] = Z , (;) [;(;) * J , (i)]

(4- 13)

(4-14)

where
Zs = the surface impedance, and
Js = the surface current density.

C . PARALLEL DECOMPOSlTION OF NEC

1 . Structure of the Code

As discussed in Section IV.A, the purpose of the NEC code is to calculate
the radiation pattern of an object modeled by wires and patches. The user specifies the
incident excitation, which will be an incident electromagnetic wave for scattering problems
and a voltage source in the object for antenna problems.

The NEC code solves for currents I induced in the object by the excitation E. To do
this, the unknown currents I are expanded into known basis functions with unknown
amplitudes. The vector F is found by solving the matrix equation A*F=E, where E is the
excitation vector and A is the interaction matrix. After the matrix equation is solved for F,
the currents I induced in the object are calculated from F and the basis functions. The

4-8

radiation pattern is then calculated from the induced currents I. The structure of the
sequential VAX code is illustrated in Figure 4.3.

In the NEC code developed for the Mark 111 Hypercube, while the basic approach
outlined above is unchanged, the actual code structure is similar to the sequential VAX
code. Most of the calculations are done in the hypercube elements (nodes), i.e., the fill of
the interaction matrix, the factorization, and the solution. The calculation of the induced
currents and the near and far fields are performed in the Control Processor (CP). These
field calculations are currently being added to the element code.

The basic structure of the parallel NEC code is shown in Figure 4.4. The structure
of the code in the CP is shown on the left and that of the hypercube code on the right.

a. Input. The input section of the code is performed in the CP. This
section includes reading the various input data cards from a file, creating the wires and
patches from the geometry input cards, setting up parameters regarding the excitation
vector, and determining what output is to be calculated from the input cards.

First, the input data relating to setting up and solving the matrix equation is read and
processed. This includes all of the geometry and excitation information. If the scattered
radiation pattern is to be calculated for an electromagnetic wave incident from several
different angles, NEC must solve the matrix equation A*F=E for the same A matrix but
several different E vectors, corresponding to the different angles of incidence. In this case,
the parameters needed for filling all of these E’s are calculated at the start in the CP in the
new subroutine ETMFILL. The information needed for filling the A matrix and the E
vectors is then passed to the hypercube by communication between the CP subroutine
CPCOMM and the hypercube main program NECELT. At this point, the CP is idle until it
receives the solution vector F for the first excitation vector E.

b. Matrix Fill. After receiving the initialization data from the CP, the
element code first calls the subroutine CMSETN, which handles the fill of the interaction
matrix A. The parallel fill of this matrix is described in Section IV.C.2 below. If there is
symmetry in the modeled object, the user can specify the symmetry option and, by doing
so, significantly reduce the order of the matrix equation to be factored and solved.

4-9

SOLVE F = A - ’ E
L

I FILL A

CALCULATE I FROM F

I FACTOR A I

NEXT E

END

Figure 4.3. Structure of the sequential NEC-2 program

4-10

CONTROL PROCESSOR HYPERCUBE

PASS DATA FILL A I
L

NEXT F

FACTOR A&Es I
i- I

I
SOLVE F = A-' E

NEXT E 'I
PASS F

CALCULATE I FROM F 4

I
t

END
CALCULATE RADIATION PATTERN

a

I
END

PASS F
CALCULATE I FROM F 4

I
t

END
CALCULATE RADIATION PATTERN

a

END

Figure 4.4. Structure of the parallel NEC program

4-1 1

C. Excitation Fill. After the matrix fill, the excitation E is calculated in
the subroutine ELTETM, described in Section IV.C.3. If the matrix equation is to be
solved for multiple right-hand sides, all E vectors are filled at this time through multiple
calls to this Subroutine.

For cases with I symmetric subsections, the l-point discrete Fourier transform of
the E's is next performed by the subroutine ELTDFT. Multiple calls to this subroutine are
made for the case of multiple excitation vectors.

The E's and their discrete Fourier transforms are calculated here before the
factorization. The Gaussian elimination method of factorization does not transform the E
vector(s), but the Householder transformation technique does.

d. Factorization. The main element program NECELT calls the
subroutine FACTRSN, which then performs the factorization of A. For cases with I-fold

symmetry, the factorization of A is done separately on the 1 symmetric sections. The
subroutine FACTRSN makes 1 calls to either the Householder transformation subroutine,
"NFACTR, or the Gaussian elimination subroutine, GAUSS. For multiple right-hand
sides, the factorization of A or each of A s symmetric subsections is done only once.

e. Matrix Eauation Solution. After the factorization is complete, the
matrix equation is solved by back substitution in the case of the Householder
transformation method, or by both forward and back substitution for Gaussian elimination.
The solution is done in the subroutine PARSOLV, which solves the the matrix equation
separately for each of the I symmetry subsections. PARSOLV is called by the subroutine
ELTSOLN. For symmetric cases, ELTSOLN performs the inverse discrete Fourier
transform of the solution vector F.

After the solution vector F is found for a particular excitation E, this vector is
passed back to the CP. For cases with multiple right-hand sides, the hypercube then
makes another call to PARSOLV to solve the transformed matrix equation for the next E
while the CP is processing the previous solution vector F. After the hypercube finds and
passes back the solution vector F for the last excitation E, the hypercube code terminates.

f . Current Calculation and OutDut. When the CP receives its first
solution vector F, the induced currents I are calculated sequentially from F by the

4-12

subroutine CABC. The CP then calculates whatever output was specified in the input data,
e.g., near fields and far field radiation patterns, and writes the output to a file.

For cases with multiple right-hand sides, the CP then is idle until it receives the next
solution vector F. When the output from all excitations has been found, the CP code
terminates.

2. Interaction Matrix Fill

The interaction matrix A is shown in terms of its four submatrices a, b, c,
and d in equation (4-11). In the NEC program the elements of these submatrices are
computed by subroutine CMWW (wire-to-wire interaction), CMSW (surface-to-wire
interaction), CMWS (wire-to-surface interaction), and CMSS (surface-to-surface
interaction), respectively. An element A of the interaction matrix is computed by evaluating
the electric field or the magnetic field at the center of an observation segment (a segment can
be a wire segment or a surface patch) due to the basis function centered on another segment
called the source segment. Figure 4.5 graphically depicts this process for a wire-to-wire
interaction.

Computation of each element of the interaction matrix is therefore accomplished in
three steps:

1) Defining a source segment (identified by index j) and computing some data
related to that segment

2) Defining an observation segment (identified by index i) and computing data
related to that segment

3) Finally, evaluating either the electric field or the magnetic field using the
information obtained in the previous steps.

The order in which the first two steps are taken differs depending on the submatrix
that is being filled.

In the sequential NEC program, the interaction matrix is filled inside a double DO-
loop with index variables i and j, where i and j go from 1 to N (the total number of
segments). Figure 4.6 show a block diagram for the sequential code. In the first DO-loop

4-13

T

compute E-field or H-field I on segment 1

Figure 4.5. Interaction of wire segments i and j

Input 6 Generate Data

Figure 4.6. Sequential interaction matrix fill

a source segment j is picked and the current expansion function on that segment and
adjacent segments are computed. In the second DO-loop an observation segment i is
picked and the electric field or magnetic field on that segment is computed depending on if
it is a wire segment or a surface patch. Consequently, in row i, column j and columns
corresponding to segments connected to segment j are filled.

4-14

In the parallel NEC program several nodes are used to fill the interaction matrix.
Therefore, each processor is responsible for filling a part of the interaction matrix. To
minimize communication between nodes and redundant storage of data, each node fills full
rows of the interaction matrix. The rows are assigned to the hypercube nodes according to
the chart shown in Figure 4.7, that is, for a hypercube with np nodes, node n will compute
rows n, n+np , n+2*np , and so on. With this distribution scheme, if the number of rows
is equal to a multiple of the number of nodes, all nodes will fill the same number of rows.
Otherwise, some nodes will fill one more row than others.

Two parallel codes are developed for the matrix fill. In the first code, called the
Source Loop Sequential Code (SLSC), only the observation loop is computed in parallel.
The data in the source loop is computed in the same way as in the sequential NEC program
and therefore some redundant information is processed in the hypercube, which contributes
to a reduction in the parallel code's efficiency. On the other hand, with this algorithm there
is no need for the hypercube nodes to communicate with each other, which helps to
improve the efficiency. A block diagram of the code with the sequential source loop is
shown in Figure 4.8. Here, the program in each node is basically the same as in the
sequential code except that in the observation loop the index i takes on different values
depending on the node in which the code is running.

INTERACTION MATRIX (A)

ROW 1

ROW 2

ROW 3

ROW np-1

ROW np

ROW np+l

ROW np+2

ROW np+3

e
0

e

NODEl - NODE2

f-- NODE3

0

e
e - NODE (np-l)

- NODEl - NODE2 - NODE3

NODE np

e
e
e

e
e J e

Figure 4.7. Assignment of rows to hypercube processors

4-15

input

Factor and Solve

I
Generate Data

I

+ Send Data to Cube

node n P 1 node 1

7

nodem

0 Source Loop

Do 1 j = 1, NT

Compute current expansion
function on Segment - j

0 Observation Loop

D o l i = m , m - t n P' m + 2 * n P""

Fill rows m, m + n p . . . , m + im* n P
Compute E-field on seg. i

Figure 4.8. Sequential source loop for the parallel interaction matrix fill program

4-16

The second code, called Source Loop Parallel Code (SLPC), is an extension of the
source loop sequential program. A block diagram of this code is shown in Figure 4.9.
Here, the observation loop is computed as for the SLSC, but to avoid processing redundant
information, the source loop, as well as the observation loop, is made parallel. This is
implemented only for wires because the source information for patches can be computed
faster than it can be communicated at all times. In this program, each node will compute
the source data for segments j=m, m+np, m+2*np , and so forth. Therefore, the data for
all source segments is available but divided among all of the nodes. Hence, for a node to
obtain the source data for all segments, it has to receive some of that data through
communication channels from other nodes. For this purpose, the nodes are mapped into a
one-dimensional periodic lattice (that is, a ring) (Figure 4.10). With this arrangement,
each node can send or receive information from its two neighboring nodes only. The
information flow is set to be counterclockwise and therefore node m will receive data from
node m-1 but sends data to node m+l.

To better describe the source loop parallel algorithm, consider the example shown
on Figure 4.11. It is assumed that a problem with 6 segments is being computed by a 4-
node hypercube. Now, we will observe node 1 at different times after the source loop is
started at time to:

- At time tl, node 1 computes source data for segment j=1.

- At time t2, it sends data for j=l to node 2 and receives data for j=4 from node 4.

- At time t3, it sends data for j=4 to node 2 and receives data for j=3 from node 4.

- At time Q, it sends data for j=3 to node 2 and receives data for j=2 from node 4.

- At time t5, all nodes, including node 1, compute the source data for segments j=5

and j=6.

As in the case above, if there is a remainder in the division of the number of
segments by the number of nodes, the data for the remaining segments is computed
sequentially.

4-17

'input

I
r- node n

P node 1 r 1 node m

Source Loop

)...e

. . . e 4

Send source segment data to from
node node

P - 1
m -1 m + l n

to
node
2

- Generate source segment data for

P " " '
j = rn, m + n

- or receive source segment data from
left-hand side node

1 0 Observation LOOP

- Fill matrix elements for rows
i = m, m + n

0 ' " ' '

+
I

0 Compute currents and fields

to
node
1

Figure 4.9. Parallel source loop for the parallel interaction matrix fill program

4-18

Figure 4.10. Node arrangement for the source loop parallel program in a
32-node hypercube

3. Parallel Fill of the Excitation Vector

NEC solves the matrix equation A*F=E, where the excitation vector E and
the solution vector F have NT = N+2*M elements for an object modeled with N wires and
M patches. For objects with no symmetry, the interaction matrix A is NT * NT. For an
object with 1 symmetric subsections, A has N columns and NPEQ rows, where
NPEQ=NT/I as discussed in Section IV.4. When the solution vector F is found, it is
written over the E vector and so the parallel decomposition of E also determines the parallel
decomposition of F.

The parallel decomposition of the E fill is determined by the parallel decomposition
of the matrix fill. For cases with no symmetry, the only restriction on E is that the ifh
element of E be in the same node as the ith row of A so that the solution algorithm can
proceed without the necessity of fetching the needed element of E from a different node.
Thus, the elements of E are "dealt out" to the nodes as the rows of A were (see Section
IV.C.2): the first element goes to the first node, the second element to the second node, and
so on, returning to the first node after the np elements have been dealt. The deal proceeds
until all elements of E have been distributed.

For cases with symmetry, the distribution of E changes somewhat, although the
parallel decomposition is still determined by the decomposition of A and the requirements
of the solution algorithm. As discussed in Section IV.C, the code now solves 1 matrix

4-19

0 Assume number of segments to be:

N = 6 ; J = 1 , 6

node 1 node 4

node 2 node 3

0 Source segment data is either computed in nodes or transferred to nodes in the

following sequence in node

- Time to start source loop

- Time t1 compute source segment data for J =

- Time t2 send data for J = [
- Time t3senddatafor J =

- Time t4 send data for J =

- Time t5 compute source segment data for J = 5 and 6

Figure 4.1 1. Example of a parallel source loop algorithm on 4 nodes

4-20

equations of order NPEQ=NT /I, where 1 is the number of symmetric submatrices of A. In
these cases, E is also composed of 1 symmetric subvectors of length NPEQ. The NPEQ
rows of A have been distributed as in the case with no symmetry. Now, the I symmetric
subvectors are distributed separately, always assigning the first element of the subvector to
the first node, the second element of the subvector to the second node, etc., until the
NPEQ elements have been distributed. In the end, the corresponding elements of each
subvector of E are in the same node: elements 2, 2+NPEQ, 2+2*NPEQ are in the second
node. The number of elements in each processor, then, is always a multiple of 1. Figure
4.12 shows an example of decomposition of E for N segments and 3-fold symmetry.

For cases with symmetry, E, as well as the interaction matrix A, is expanded into a
discrete Fourier series immediately after it is filled. At the solution time the elements of A,
E, and F are the coefficients of this expansion. Although the parallel decomposition of E is
determined by the decomposition of A, this decomposition has the added feature that all of
the elements of E which are needed to perform the discrete Fourier transform have been
assigned to the same node. Thus, no internode communication was necessary to perform
the discrete Fourier transform of E and, likewise, to perform the inverse discrete Fourier
transform of the solution vector F.

PROCESSOR 1

PROCESSOR 2 .

(A ’ A’ A3) AND [E: E3 j

‘1.1 ‘1.2 ‘1,N

’2,l A2.2 A2.N

0 .

. .

€2 .

EN+ 1

E N + 2

3

3 .

‘2N -
3

1
3

PROCESSOR 1

PROCESSOR 2 . .

PROCESSOR 1

PROCESSOR 2 . . .
PROCESSOR 1

I 2 I PROCESSOR 2 .

Figure 4.12. Assignment of processors for an object with 3-fold symmetry
and N segments

4-2 1

4. Factorization and Solution

a. Householder Transformation. The Householder transformation is
one of the two techniques used for the factorization of the interaction matrix [4-21. This
factorization method is well-suited to a parallel implementation because it operates on
columns of the matrix where each column's set of computations is independent of the
computations performed in the other columns. As the factorization progresses, the matrix
is transformed into an upper right triangular matrix by a series of orthogonal
transformations (Figure 4.13). The right-hand-side excitation vectors must undergo the
same series of transformations at the time that the interaction matrix is transformed. In this
way there is no need to store (or, for that matter, even explicitly compute) the
transformation matrix.

Because the Householder transformation algorithm works on columns of the A
matrix, the data must be redistributed to the nodes by columns following the matrix fill.
The Householder transformation consists of NPEQ transformations (where NPEQ is the
number of rows in the interaction matrix). For the first transformation, the data in the first
column is distributed to all nodes using a BROADCAST call. Each node uses this column
to determine the new elements for its columns of what now becomes the "working matrix"
as well as to determine its elements of the new factored matrix. At the conclusion of the
first transformation, the interaction matrix contains new columns for columns two through
column NPEQ of the working matrix; column one will no longer be active. In the second

For matrix A (m,n), the Householder Transformation is:

T A =

where
T is the orthogonal transformation matrix
S k are the diagonal elements of the transformed matrix
a i are the transformed elements of the A matrix

~~ ____ ~~ ~ ~

Figure 4.13. Householder transformation

4-22

transformation, the node which has column number two distributes it to all of the other
nodes. Again each node computes the new elements for its active columns of the working
matrix and its elements of the second row of the factored matrix. The transformation
progresses, each time with one less active column, until NPEQ transformations have been
performed and the complete upper right triangular matrix is constructed (Figure 4.14).

In order to economize on storage, the newly computed factored matrix row
elements overwrite the inactive portion of the working matrix (Figure 4.15). Since the
elements are distributed among the nodes at the end of a transformation step, the data is
combined and assembled in the node which will eventually do the solution for that row.
This row assignment matches the earlier row assignment in CMSETN. At the end of each
transformation, the newly calculated transformed elements of the excitation vector(s) are
also replaced in the source nodes, again matching the earlier row assignments. At the
conclusion of the factorization subroutine, HHNFACTR, the data is in position for the
back substitution.

b. Gaussian Elimination. The second technique used for factorization
is a row variant of Gaussian elimination with partial pivoting (Figure 4.16) [Ref 4-31.
This factorization technique produces upper and lower triangular matrices which must be
solved using both forward and back substitution. With this algorithm the interaction matrix
is distributed to the nodes by rows. Each node processes those rows for which it is
responsible.

The first task in each elimination step is to determine in which row (and therefore in
which node) resides the maximum element (Figure 4.17). The maximum is first
determined locally within each node. Then the nodes exchange maximum elements to
determine which element is the global maximum. If the node which is responsible for that
elimination step row does not have the maximum element, it must then exchange that row
for the row which contains the maximum element. This process is called "partial pivoting."
In the process of the exchange, which is completed via a global BROADCAST command,
all nodes obtain a copy of the elimination row. This elimination row will be used as a '
multiplicand by all nodes as they next complete the remainder of the elimination step, now
locally.

4-23

Performed in parallel:

A Matrix ,
J ' *

F A Matrix
J

Figure 4.14. Upper right triangular matrix formed using the Householder transformation

4-24

F
The factored matrix A after the kth Householder Transformation:

T,A = : F :F
I

To minimize storage, the A matrix columns are stored as rows. Then as factoring
T F

progresses the A and A are merged:

T,A =

Figure 4.15. Householder transformation after the kth transformation. AT

is the working matrix which is discarded after the
factorization. AF is the newly factored upper right triangular
matrix.

Although both factorization techniques are implemented and the user is given the
option of selecting the technique to be used as an input parameter, the Gaussian elimination
technique is the one generally chosen. The Gaussian elimination factorization currently
runs a factor of about 4 times faster than the Householder transformation. It is conjectured
that this may be due to the additional data reorganization that the Householder
transformation technique requires. Both techniques are inherently order N3 operations.
Further work is required to better understand the difference in the performance of the two
algorithms. The relative performance statistics may change some when the NEC code runs
using the Weitek daughter board floating point accelerator.

4-25

ROW k -

ROW r -

- ?
I

INTERCHANGEABLE
ROWS

- - - - 4
LARGEST ABSOLUTE VALUE

CHOOSE r AS THE SMALLEST INTEGER FOR WHICH

AND THEN INTERCHANGE ROWS k AND r.

Figure 4.16. Matrix factorization by Gaussian elimination

c. Solution. The solution method depends on the method of
factorization selected: for Householder transformation there is a back substitution for each
right-hand-side excitation vector, and for Gaussian elimination there is both forward and
back substitution for each excitation. Each node calculates the solution elements for the
rows it is assigned. At the conclusion of the calculation of each row, the solution elements
are broadcast to the other nodes. These solutions become multiplicands for subsequent
steps of the solution.

d. Numerical Green's Function. The factored interaction matrix may
be stored in a file and used in subsequent solutions by taking advantage of the Numerical
Green's Function (NGF). It is as though the free space Green's function in NEC is
replaced by the Green's function for the scattering object which has been stored in a file.
The NGF is used to model large structures where various components will be added as an
iterative process in the course of the analysis. NGF is also useful when analyzing an object

4-26

IN ITlALlZATlON

lo kth = 1, n-1

DETERMINE LOCAL MAXIMUM
COLUMN ELEMENT

v
DETERMINE GLOBAL MAXIMUM

COLUMN ELEMENT

EXCHANGE PIVOT ROW
AND kth ROW

BROADCAST PIVOT ROW
TO ALL PROCESSORS

=

I BROADCAST PIVOT ROW I TO ALL PROCESSORS

I COMPUTE MULTIPLIERS I AND UPDATE LOCAL ROWS
I

Figure 4.17. Parallel factorization by Gaussian elimination

4-27

with partial symmetry. The symmetric portion can be solved on the initial run of NEC,
thereby reducing the order of the matrix to be solved and therefore the computation time.
The unsymmetric portions are then added on later runs.

As implemented in NEC, the NGF does not permit incremental building of a
structure. That is, all additions are recalculated in subsequent runs. Therefore, as the
object grows, more and more computations are repeated. We are currently developing the
capability to incrementally design an object by incorporating the new portion into the
factored interaction matrix. Two techniques are being considered: a block Gaussian
elimination algorithm and a matrix update by means of the Householder transformation. A
third method is being investigated for cases where the number of modifications/additions
are small relative to the overall structure. It is an iterative technique using the factored
interaction matrix as a preconditioner.

The development of the iterative NGF capability in NEC is particularly important
because the implementation of the Concurrent Input/Output (CIO) system is now completed
for the Mark 111 Hypercube. Currently there are four 300-megabyte disk drives attached to
the 32-node hypercube, one drive per 8-node sub-cube. Four more disk drives will be
added in the fall of 1988. The factored matrix is stored on disks in a distributed fashion by
issuing a CIOWRITE command and restored to memory from the disks by a CIOREAD.

There are three main branches to the parallel NEC code (Figure 4.18). In the
normal mode, an execution flag, NGFLG, is set to zero, indicating that no NGF file will be
read or written. If a user wishes to preserve the factored interaction matrix, the NGFLG is
set to one and at the conclusion of the run the matrix and ancillary data are stored on the
distributed disk drives. If a user wishes to modify an existing structure, then the NGFLG
is set to mo, which instructs the program to retrieve, from the disk drives, the factored
interaction matrix and ancillary data from a previous run.

D. NUMERICALRESULTS

The numerical results obtained from the parallel NEC have been checked with the
results from the original sequential NEC-2 running on a VAX 11/750 and have shown
excellent agreement. The results for three problems, where wires or patches, either
separate or combined, are used, are discussed here. Also, examples are shown for

4-28

NGFLG = 0, no NGF Initialization
= 1, write NGF file
= 2, read NGF file

matrix from disk

Fill B, C, D

c

n Fill E

Factor Factor
0 Householder or

Gaussian Elim.
Householder

substitution I Back I
Return

solution

I Write factored I
matrix to disk

substitution

Return
solution

f
Figure 4.18. Three main branches to the parallel NEC code

validation of the code when the extended thin wire approximations or loading are
employed.

1. Monopole on a Pedestal Over Perfect Ground

This problem is modeled by as many as 290 wire segments. The pedestal is
modeled by several radial 2-wire sections (or ribs) as shown in Figure 4.19. Each wire, in
turn, is divided into several segments. A quarter wave length monopole is placed at the
center of the pedestal and is fed by a voltage source at the bottom. The far field radiation
pattern of this monopole, in plane Q = 0, is shown, where @ and 0 are the standard
azimuthal and polar angles in the spherical coordinate system. The solid line is from the
sequential code, while the dots.show the results from the parallel code. To the precision of
the respective machines, excellent agreement exists between the two codes. The bend in
the pattern which can be noted is due to the presence of the pedestal. By increasing the
number of ribs in the wire model, the effect of the pedestal will become more significant.

4-29

0.25 h 1
e = @ - Sequential

Parallel

-30 -20 -10 0 70
dB

Figure 4.19. Radiation pattern of a quarter wave monopole on a pedestal
over perfect ground; Q = 0 cut. The structure is modeled by
130 wire segments.

2. Scattering of a Plane Wave by a Conducting Sphere

The conducting sphere is modeled by patches only. In the example shown
in Figure 4.20, the sphere is modeled by 80 patches without taking advantage of the
symmetry. The incident field is a uniform plane wave traveling in the -x direction and is
polarized in the -z direction. The far field scattering pattern of the sphere, for the plane
Q = 0, is shown. The solid line shows the results from the sequential NEC code; while
the dots show the results from the parallel code. As in the previous example, very good
agreement exists. For this example ka = 3.0, where

X = the plane wave wavelength, and
a = the radius of the sphere.

4-30

- SEQ UE N TI AL o= 0
0 PARALLEL

A
0.0

Z
t SCATTERING PATTERN

FOR4= 0 PLANE, dB

-I ,g=
10.0

90°

Figure 4.20. Scattering pattern of a sphere with ka = 3.0 in the Q = 0 plane.
The incident field is a plane wave traveling in -x direction.
The sphere is modeled by 80 patches.

3. T Antenna on a Conducting Box Over Perfect Ground

This problem is modeled by both patches and wires. The box is modeled
by 12 patches and the T antenna by 8 wire segments. This is the same as in example 4 in
the NEC manual [4-11. The T antenna is fed by a voltage source at the bottom. The
radiation pattern of this antenna, for the Q = 0 plane, is shown in Figure 4.21. The solid
line shows the results from the sequential NEC and the dots show the solution from the
parallel NEC.

4. Extended Thin Wire and Loading

To demonstrate the effect of using the extended thin wire kernel and
loading, the monopole on a pedestal structure of Section IV.D.l is employed. The
structure is modeled by 70 segments. The radiation pattern of the monopole, for the Q = 0
plane, is shown in Figure 4.22. Here, the solid line shows the results when thin perfectly

4-3 1

e = o S EQ U E N T IAL
0 PARALLEL

1 e= 90

T ANTENNA ON A BOX
OVER PERFECT GROUND

-30.0 -20.0 -10.0 0.0 10.0

FAR-FIELD PATTERN, dB
FOR d) = 0

Figure 4.21. Radiation pattern of a T antenna on a box over perfect ground
in the 4 = 0 plane

conducting wires are used, dots represent the case of thin aluminum wire (loading), and the
A marks show the solutions for the case when thick wire is used with the extended thin
wire kernel. All of these fields are calculated by the parallel code, and excellent agreement
with the sequential code is verified for every case. It can be noted that the effect of the
pedestal on the pattern is less significant when a fewer number of ribs are used (10 ribs
here compared to 15 ribs in the example shown in Figure 4.19). Also, use of the extended
thin wire, even with a lower number of ribs, models the pedestal much more realistically
than the thin wire kernel modeling of Section N.D. 1. This more realistic model is evident
from the strong interaction of the fields with the pedestal shown by A marks in Figure
4.22.

E. PERFORMANCE

To evaluate the performance of the NEC parallel program, one measure that can be
used is the CPU time taken to run this code on the Mark I11 Hypercube compared with the
time to run it on an VAX 11/750. Several parameters, such as the time taken to fill or
factor the interaction matrix, and the speedup factor, are analyzed.

4-32

- THIN WIRE (PERFECT CONDUCTOR)
A THICK WIRE (EXTENDED THIN WIRE KERNEL)
0 THIN ALUMINUM WIRE

0.25h

I I
-30 -20 -1 0 0 10

dB

@=goo

Figure 4.22. Radiation pattern of a monopole on a pedestal over perfect
ground in the $ = 0 plane

1 . Timing

To analyze the timing performance of the parallel NEC program, two
examples are considered:

a. Scattering by a SDhere. The sphere of Section IV.D.2 is modeled
by 120 surface patches which do not use the symmetry option. The interaction matrix for
this problem is of size 240 x 240. The times to fill and factor this interaction matrix, as
well as the speedup factors, are shown in the tables of Figures 4.23 and 4.24, respectively,

4-33

DIMENSION OF NUMBER OF FILL TIME,
CUBE NODES sec

0 1 39.5

1 2 19.8

2 4 9.9

3 8 5.0

4 16 2.5

5 32 1.3

Figure 4.23. Time and speedup factor for filling the interaction matrix of a
sphere modeled by 120 surface patches versus the dimension
of the hypercube. The matrix size is 240 x 240.

SPEEDUP
FACTOR

1

2.0

4.0

7.9

15.8

30.4

as a function of the number of nodes used in the hypercube. In this case, as with the other
timing runs in this section, unless otherwise noted, the fill is performed using the Source
Loop Parallel Code (SLPC) and the Gaussian elimination technique for factoring.

The times taken to do the fill and the factor on one processor are 39.5 and 836.4
sec., respectively, while the same times are 25.4 sec. and 895.2 sec. for the VAX 11/750
computer.

Generally the fill and the factor times total more than 90% of the overall time in the
NEC sequential program. Therefore the time taken to process the input, to solve the
factored matrix, and to compute the far or near fields is small when compared to the overall
time.

Currently the largest problem which can fit into one hypercube node is a modeled
object requiring a total of 300 equations. This means that the limit is 300 wire segments or

4-34

DIMENSION OF NUMBER OF FACTOR TIME,
CUBE NODES sec

0 1 836.4

1 2 423.3

2 4 21 6.3

3 8 113.0

4 16 61.3

5 32 36.5

Figure 4.24. Time and speedup factor for factoring the interaction matrix of

SPEEDUP
FACTOR

1

2.0

3.9

7.4

13.6

22.9

a sphere modeled by 120 surface patches versus the
dimension of the hypercube. The matrix size is 240 x 240.

150 patches unless the symmetry option is invoked. The largest problem that the VAX
111750 can run contains 300 equations. The 32-node Mark 111 Hypercube can run cases in
core which consist of up to 2400 equations. The 128-node hypercube will be able to
double this number to 4800 equations. With the addition of the disk drives to the Mark I11
Hypercube, out-of-core solutions can now be considered. With the 4 existing disk drives

the maximum size problem which will be possible on the 32-node hypercube increases to
about 10,OOO equations.

b. MonoDole on a Pedestal. In this section, the monopole on a
pedestal of the type described in Section IV.D.1 is modeled by 20 ribs and a total of 290
segments. Therefore, the interaction matrix is of the size 290 x 290. The fill and factor
times versus the number of nodes in use are shown in the tables of Figures 4.25 and 4.26,
respectively.

4-35

FILL TIME, sec

NUMBER 'SOURCE-LOOP SOURCE-LOOP DIMENSION
OF CUBE OF SEQUENTIAL PARALLEL

0 1 1725.0 1725.0

1 2 876.0 91 5.3

2 4 445.5 506.6

3 8 230.3 292.6

4 16 122.6 158.7

5 32 68.8 81.5

Figure 4.25. Time and speedup factor for filling the interaction matrix of the
monopole on a pedestal versus the dimension of the hypercube.
Results from source-loop parallel and source-loop sequential codes
are shown. The matrix size is 290 x 290.

SPEEDUP FACTOR

SOURCE-LOOP SOURCE-LOOP
SEQUENTIAL PARALLEL

1 1

2.0 1.9

3.9 3.4

7.5 5.9

14.1 10.9

25.1 21.2

DIMENSION OF NUMBER OF FACTOR TIME,
sec CUBE NODES

0 1 1474

1 2 750

2 4 388

3 8 205

4 16 113

5 32 69

Figure 4.26. Factor time and speedup factor for the interaction matrix of
the monopole on a pedestal versus the dimension of the cube.
The matrix size is 290 x 290.

SPEEDUP
FACTOR

1

2.0

3.8

7.2

13.0

21.4

4-36

The speedup factors for filling and factoring the interaction matrix are plotted in
Figure 4.27. The speedup factor is defined as:

Time to run program on one node
Time to run program on N nodes Speedup Factor =

For this problem, the top speedup factor for 32 nodes is 21.2 for filling and 21.4 for
factoring.

For the fill time, the two parallel codes discussed in Section IV.C.2 are used. It is
evident that for this problem, the source-loop sequential code is faster than the source-loop
parallel code for any number of nodes used. For this example, processing of the
information in the source loop takes less time than it takes to communicate that information
to other nodes. The fill and factor times for the VAX 11/750 are 1808 sec. and 1771 sec.,
respectively. The fill time is very close to the time on one node because the parallel
program for wires on one node is almost identical to the VAX sequential code. Additional
data for timing and speedup factors for the 32-node Mark III Hypercube compared with
those for the VAX 11/750 are shown in Tables 4.1 and 4.2.

The speedup factors for filling and factoring the interaction matrix versus the
number of nodes used in the hypercube are shown in Figure 4.28. These curves are almost

- linear; however, the SLSC shows a better speedup factor across the range for the number

of nodes than does the SLPC version.

2. Fixed Problem

When analyzing how a particular algorithm scales for different hypercube
configurations, we need to keep the size of the problem fixed within a node. If the total
problem size remains the same, the amount of work assigned to each processor decreases
as the number of nodes in use increases. Consequently, as the number of nodes increases,
the ratio of computation to communication decreases and the problem runs less efficiently.
In other words, to run efficiently, it is important to keep the amount of computation high in
each node.

4-37

30.0

20.c
U
0
I- o

n
3
n
LLI
w a
(I)

2

1 O.(

TIME ON ONE NODE
TIME ON Np NODES

SPEEDUP FACTOR =

I I I I
10 20 30 40 0

NO. OF NODES USED IN MARK Ill HYPERCUBE

Figure 4.27. Speedup factor for filling (using SLSC) and factoring (using Gaussian
elimination) the interaction matrix for scattering by a monopole on a pedestal
versus the number of nodes used. The matrix size is 290 x 290.

4-38

Table 4.1. Timings for the sphere scatterer

Increase

17.7

18.1

20.1

21.1
-

-
-
-

-

Number
of Patchez

80

120

168

224

288

360

440

528

624

VAX,
sec

260.5

895.2

2661.0

6236.0
-

-

-
-

-

Number

270

VAX,
min

4.5

15.3

45.2

105.5
-

-
-
-

-

Fill
32-Node,

sec

Total
32-Node,

min

0.2

0.6

1.6

3.8

7.3

13.5

24.2

41.9

68.2

0.6

1.4

2.6

4.5

7.5

11.9

17.7

25.6

35.7

Increase

19.3

21.5

22.2

25.1

Total
V U , 32-Node,
min min

25.5 1.1

32.4 1.3

39.8 1.6

49.4 1.8

Factor
32-Node,

sec

Increase

28.8

28.2

29.2

30.1

27.2

12.7

36.5

91.7

209.7

429.1

798.6

1431.6

2486.6

4056.2

VAX,
sec

586.2

817.6

1078.9

1423.6

1771.1

Increase

20.5

24.5

29.0

29.2
-
-
-
-

-

Table 4.2. Timings for the monopole on a pedestal problem

~

943.4

1125.5

1307.1

1541.8

1807.6

Fill
32-Node,
' s e c

32.8

39.9

44.7

51.2

66.5

I

I

Factor
32-Node,

sec

30.4

38.0

48.7

56.7

InCreaSe

20.4

24.3

28.8

29.6
-

-

-
-

-

25.8

24.9

25.5

27.5

69.1 I 25.6 I 59.0 1 2.3 I 26.4

To demonstrate how the FILL algorithm of the parallel NEC scaled with the size of
the hypercube, the input data size is determined so that for each run all nodes receives 5000
elements, that is

2 n
No. of Nodes = 5000

4-39

30.0

20.0
II:
0
I- o a
LL
a
3
n
w
LLI a cn

1o.c

(

SOURCE-LOOP SEQUENTIAL FILL

SOU RCE-LOOP
PARALLEL FILL

TIME ON ONE NODE
TIME ON Np NODES

SPEEDUP FACTOR =

I I I I
0 10 20 30 40

NO. OF NODES USED IN MARK Ill HYPERCUBE

Figure 4.28. Speedup factor for filling and factoring the interaction matrix of the
monopole on a pedestal versus the number of nodes used. Results from the
source-loop parallel and source-loop sequential codes are shown for the
matrix fill. The matrix size is 290 x 290.

4-40

As the number of elements in a row increases, the number of rows for which a
node is responsible decreases. Figure 4.29 shows the results for the runs on the hypercube
beginning with a dimension of 0 (1 node) and proceeding up to a dimension of 5 (32
nodes). As the number of nodes increases, the parallel algorithm demonstrates excellent
scalability. The slight increase in time required for the larger size hypercubes would be
expected. The number of elements per node is the product of N (the number of elements in
a row of the interaction matrix) and the number of rows in that node. During the fill there
is an initial computation which is performed N times. As the number of rows per node
decreases, the size of N increases and, as such, affects slightly the overall time.

It is more difficult to analyze how the factor algorithm of the parallel NEC code
scales with the size of the hypercube. One could construct a fixed case data set based on
the fact that factorization algorithms are of order n3. However, as the number of elements
in the overall matrix increases for larger hypercubes, so does the number of transformation
or elimination steps required to perform the factorization. Each step is preceded by
communication of the pivotal row or column data. The results from different sizes of
hypercubes would thus be a comparison of problems with considerably different
computation and communication requirements.

3. Analysis of the Performance of Fill Algorithms

In using the two parallel codes, it is observed that for the 290-segments
monopole on a pedestal, the source-loop sequential code (SLSC) consistently achieved
lower fill times than the source-loop parallel code (SLPC). Even though better times are
obtained by SLSC for most of the examples that we have run throughout this study, there
are many cases for which SLPC yields lower fill times.

To understand this result better, we should study the source loop in more detail. As
we discussed in Section IV.C.2, the source segment information is computed inside a DO-
loop with index variable j, where j goes from 1 to N (the total number of segments). For
problems where the structure is modeled by wires, the time to process this information can
be substantial and therefore the SLPC was developed to communicate the data, instead of
computing it sequentially in every node, as in the SLSC. For wire problems, each wire
segment can be connected to several other segments as shown in Figure 4.30. In general,
each segment can be connected to nseg number of other segments. Since the basis function

4-4 1

55 -
54 .'
53 ..
52
51 -.

Time (sec.) 50 - L

49

48

47

46

45 '1

Figure 4.29. Scaling of the performance of the parallel fill algorithm where
the problem size per node remains fixed at 5000 elements

-.
.*

..
*.

1

Multi-wire Junction 2

1 Segment j

Simple Junction

Figure 4.30. General wire segment connection

on each segment is extended over the adjacent segments, the number of local boundary
equations to be solved for eliminating two out of three segments increases. In most

problems, wire junctions have only 2 wires connected to them ("simple" junctions) and
therefore source-loop information can be processed very fast without any need to use
communication between nodes--SLSC should then be used. However, if a problem is

modeled with multi-wire junctions, one has to look at the ratio of the number of these
junctions to the number of simple junctions as well as the number of nodes used in the
hypercube to select SLSC or SLPC.

4-42

For example, look at the monopole on the pedestal problem, which is modeled with
a differing number of wire segments but always 20 ribs on the pedestal. Only one multi-
wire junction with 21 segments is always present, and by changing the number of
segments, only the number of simple junctions changes. These models were run on a 32-
node hypercube, for maximum communication effect, and fill times obtained from SLSC
and SLPC are plotted versus the total number of segments in the model, as shown in
Figure 4.3 1. It can be seen that for a number of segments less than 90, the SLPC is faster.
This speed is due to a relatively small number of simple junctions. As the number of
segments is increased above 90, the number of simple junctions is increased and since, for
these junctions, computing the source information is faster than communicating it, the
SLSC yields better fi times.

F. FUTUREPLANS

There are three areas of emphasis in our current work on the method of moments
code. The first is to implement an iterative Numerical Green's Function which has been
described in Section IV.C.5. The ability to stepwise build and refine the design of an
object by using previous calculations has now been made possible by the development of
the Concurrent Input/Output system. Factored interaction matrices are archived in a
distributed fashion on disk drives attached to the nodes. By having multiple disk drives,
even large matrices (hundreds of megabytes in size) can be transferred to and from disk
during the iterative design phase.

A second area of effort which has been enabled by the addition of disk drives to the
hypercube nodes is the incorporation of out-of-core solutions. The maximum problem size
which can be computed on the 32-node hypercube will expand from 2400 equations to
about 10,000 equations. With the ongoing development of the hypercube operating
system, virtual memory capabilities will eventually automate out-of-core solutions.

The third development which is under way is the parallel implementation of the
output analysis routines. Up to this time these routines have run sequentially on the host
computer, Counterpoint Control Processor, or on the Electromagnetic Interactive Analysis
Workstation, a Sun 3/160. Because the time to perform the matrix computations has been
dramatically reduced by the hypercube implementation, these sequential functions no longer

4-43

70

60

50
0
I

Z
0

r 30
J

U
1

20

10

1 00 200 300

NO. OF SEGMENTS IN THE WIRE MODEL

Figure 4.31. Time for the interaction matrix fill for a monopole on a
pedestal versus the number of segments in the model for the
source-loop parallel and source-loop sequential codes

take 10% of the overall time as they once did in the sequential code. Extrapolating from a
law put forth by Amdahl, it is essential to put into parallel all aspects of the computation so
that the once insignificant sequential computations do not become the dominant time
component.

4-44

REFERENCES

[4-11 G. J. Burke and A. J. Poggio, "Numerical Electromagnetics Code (NEC) - Method
of Moments," Lawrence Livermore National Laboratory, Livermore, CA, 198 1.

[4-21 G. J. Bierman, Factorization Methods for Discrete Seauential Estimation--
Mathematics in Science and Engineering, Volume 128, Academic Press, New York
City, NY, 1977.

[4-31 E. Chu and A. George, "Gaussian Elimination with Partial Pivoting and Load
Balancing on a Multiprocessor," Parallel Computing, Proceedings of the
International Conference on Vector and Parallel Computing--Issues in Applied
Research and Development, June 1986, Loen, Norway, Nos. 1 and 2.

4-45

SECTION V

FINITE ELEMENT ANALYSIS

A. DESCRIPTION OF THE METHOD

1 . Application of Finite Elements to Electromagnetic Scattering

The finite element method is used for the approximate solution of partial
differential equations that arise in many engineering and scientific contexts [5- 13. As
shown schematically in Figure 5.1, the method employs a spatial discretization of a
continuous domain. In general, the domain is represented by a mesh of nodal points, and
the polygonal (or polyhedral) regions delimited by this gridding are the elements, from
which the finite element method derives its name. One of the principal strengths of the
method is the ease and generality with which irregularly shaped domains can be treated,
since elements of various shapes and sizes may be employed.

We shall assume that the original mathematical statement of the problem takes the
form of an elliptic partial differential equation. In the context of electromagnetic (EM)
scattering, this differential equation is the Helmholtz equation describing the incident and
scattered fields for a particular wave number, k. As a concrete example, we shall consider

. the two-dimensional (2-d) scattering of an incident transverse electric (TE) polarized wave
by an arbitrary 2-d body. In this case, the out-of-plane magnetic field HZ satisfies the
Helmholtz equation:

V -VH, + k H,=O I: 1 *
(5.1)

where E is the relative permittivity and k is the wave number. In practice, this open region

problem is solved within a finite domain through the introduction of an artificial far-field
boundary condition. In the present work, we have adopted the approach of Bayliss and
Turkel [5-21. A cylindrical artificial boundary is parameterized by radius p and angular
coordinate 4. The boundary condition on scattered fields then becomes:

2

n element

flexible in A=-
handling
of irregular
domains \ I I

nodal
point

governing P.D .E.

(strong form)

2 V $ = O
variational (weak) form

JF($,Qx,Qy,...) dx dy

linear equations

A x = b

Figure 5.1. The finite element method employs a discretized spatial domain
for the approximate solution of boundary value problems.
Unknown field quantities are defined at nodal points, and
interaction matrix elements are derived by integration over
finite elements. The discretization leads to a system of linear
algebraic equations.

5-2

where A and B are p-dependent operators.
approximation of these original equations.

We turn now to the finite element

The governing differential equation or so-called strung form can be shown to be
equivalent to an integral variational weak form statement of the problem. In this particular
case, the weak form is an integral equation of the form:

where T is an arbitrary test function that satisfies certain continuity conditions. Equation
(5.3) contains the unknown scattered H field in the left hand side, while the excitation term
in the right hand side depends on the incident field through:

F =
(5.4)

Next, this weak form is applied to the discretized finite element domain through the
introduction of a set of approximate nodal basis functions. This discretization of the weak
form results in a discrete set of unknown coefficients that are related by a system of linear
algebraic equations. Thus, the finite element method involves the construction and solution
of a matrix system whose rank is equal to the total number of unknown nodal degrees of
freedom.

The matrix which results from this finite element approximation is, in general,
sparse, with an irregular clustering of non-zero elements near the diagonal. The particular
structure and non-zero column profile of the stiflness matrix is dictated by the spatial
connectivity of the problem domain. The matrix contains non-zero entries connecting only
those degrees of freedom which share a common finite element in the domain
discretization. This spatial locality results from the element-wise assembly of the stiffness
matrix. Element-level matrix contributions are obtained by integration of basis functions
over the volume of individual elements, which are in turn additively assembled into the
global matrix.

5-3

The central computational task from a standpoint of cost is the solution of this
matrix system. While the overall design and implementation of the supporting finite
element software superstructure is also important, the emphasis of the work described here
is on the equation solution task. In this and the following sections, methods for the
efficient parallel solution of large finite element linear systems are described.

2. Finite Elements in the Context of Parallel Processing

As stated above, the principal computational cost associated with the finite
element method is the solution of a large matrix system. The cost-effective implementation
of this task (on either a sequential or parallel computer) requires a recognition of the special
structure and properties of the finite element matrix, in contrast with the case of a general
full matrix. One possible approach to the parallelization of a sparse matrix solver is to
decompose (or break up) the task by matrix rows and columns. While this is a viable

approach for some applications [5-31, it has disadvantages for finite element matrices.

One of these disadvantages is the inherent irregularity of the non-zero matrix element
profile, which arises from the ability of the finite element method to treat geometrically
complex grids. This irregularity complicates the problems associated with efficiently
programming a row/column decomposition and maintaining an even work load balance
among the parallel processors. A perhaps more obvious disadvantage is the relatively large
amount of interprocessor data communication required to perform operations on rows and
columns that reside in different processors. (While this problem is most apparent in a
distributed memory concurrent architecture, it can also manifest itself in shared memory
machines in the form of memory access conflicts.)

In the present research, we utilize a domain decomposition approach, which divides
up the problem in the physical domain space, rather than in the abstract "matrix world."
The meaning of domain decomposition in the current context is illustrated in Figure 5.2.
Contiguous spatial subdomains of finite elements are assigned to the distinct processor
nodes of a multiprocessor computer. We need to be somewhat more specific, however,
about what is meant by "assignment." Our machine model for decompositions of this kind
is based upon large-node, distributed memory architectures like that of most hypercube
multicomputers. In this model, all the information relevant to nodal degrees of freedom or

5-4

..

Figure 5.2. Domain decomposition divides the finite element grid into
subdomains assigned to different processors. Elements are the
exclusive responsibility of a single processor, while some
nodal points (open) are shared between processors.

matrix elements resides in the local memory of the processor corresponding to the given
subdomain. A given processor has direct access only to its "own" information and can be
thought of as solving a smaller version of the original full problem, subject to some special
boundary conditions. Interprocessor communication is invoked in order to exchange this
"boundary" information and obtain a global solution.

5-5

Examining the finite element decomposition in more detail, we see that elements
become the exclusive responsibility of exactly one processor. While nodal point
information is also distributed among processors, it is seen that some nodal points fall on
boundaries and are in some sense shared by two or more processors. In such cases, it is
necessary to devise a bookkeeping scheme to ensure consistent treatment of these degrees
of freedom. A detailed description of the programming used to accomplish this
management is beyond the scope of the present report, but has been described elsewhere
[5-41. For the purposes of the present discussion, it is sufficient to say that the data
structures and constructs needed to keep track of processor assignments fit naturally within
the same structures used in "traditional" finite element applications to manage different
element types and material property variations. It is only necessary in this context to
assume that any pair of processors in the concurrent computer can exchange "packets" of
communicated data via a kind of "mail" system. In the case of the hypercube computer
operating in the "crystalline" or polled communication environment, this functionality is
achieved through routed message passing (the so-called Crystal Router [5-31) and can be
regarded as a transparent "operating system" task.

This domain decomposition approach to parallel finite elements considerably
lessens the interprocessor communication load over a row/column decomposition. In this
case, communication becomes essentially an edge effect, the relative magnitude of which
diminishes with increasing problem size as the domain perimeter-to-area ratio decreases.
Because of the spatial locality of the finite element matrix elements, only those elements
spatially adjacent to a processor subdomain boundary need be involved in communication
activity.

Having discussed the rationale for domain decomposition, we turn next to the
particular linear algebraic methods used to solve the matrix system. One common and well-
understood approach to the solution of large linear systems is direct elimination. Variants
of Gaussian elimination which exploit the limited non-zero column height of the sparse
finite element matrix are widely used. Useful because of their comparative robustness and
cost-predictability, direct elimination methods can be prohibitively expensive for systems of
large rank and bandwidth, such as arise from large three-dimensional domains. It is
possible to adapt such methods to a domain-decomposed parallel setting by treating the
subdomains as "substructures" which interact through their mutually shared boundary

5-6

nodes. Gaussian elimination may be employed concurrently within each processor to
eliminate the interior (non-shared) degrees of freedom. Interprocessor communication of
the remaining (potentially large) boundary matrix would then ensue, allowing for the
subsequent elimination of the remaining shared nodal values.

An alternative approach to linear equation solving which also employs domain
decomposition is the use of iterative methods. Iterative solvers (e.g., the conjugate
gradient method) proceed by iterative improvement through a succession of approximations
toward an ultimate solution. A good deal of previous work has gone into study of such
methods for parallel implementation because of two considerations. Firstly, the
computational cost (per iteration) of such methods increases much less rapidly with
increasing domain size than is the case for direct methods. Secondly, the iterative methods
are most amenable to domain decomposition, requiring only minimal communication of
boundary information between processors. For these reasons, the work described here has
initially focused on iterative methods, although in some applications, direct or
direcviterative hybrid methods may prove useful.

Another issue which arises in the consideration of direct vs. iterative solvers is the
ability to efficiently solve for multiple right-hand sides (excitations). This is an issue of
some importance in EM scattering applications, in which it is often desirable to
systematically examine a range of incident field parameters using the same matrix.
Although direct factorization / backsubstitution methods have been historically used for the
multiple excitation problem, it has been shown [5-51 that the conjugate gradient method can
be formulated to efficiently solve for multiple right-hand sides as well. These questions
are among those designated for examination in the near future.

Unfortunately, iterative methods are not particularly robust, in the sense that their
convergence properties are highly problem-dependent and difficult to guarantee with any
single preconditioner. For this reason, the performance of these methods independent of
parallel processing issues should be ascertained prior to attempting their routine application
to a particular class of problems. The following subsections take up the application of the
method of conjugate gradients (and derivatives thereof) to the solution of linear systems of
complex equations.

5-7

3. Solution by the Conjugate Gradient Method

As shown above, applying the finite element method to EM scattering situations
results in the linear system of equations Ax = b. The coefficient matrix A is usually a
sparse, large matrix within the finite element approximation, resulting in the need to use
specialized methods of solution suited for this situation. Direct methods, such as Gaussian
elimination, are most suitable and effective for relatively small-scale problems. As we
have seen, however, as the size of the matrix increases, storage and computation costs
become excessive, and it becomes necessary to consider iterative methods. The following
is a detailed description of one such important method, the method of conjugate gradients.

Within the family of gradient methods, the process of solving a set of simultaneous
equations is equivalent to that of finding the position of the minimum for an error function
defined over an N-dimensional space (N being the order of the matrix). In each step of a
gradient method, a trial set of values for the variables is used to generate a new set
corresponding to a hopefully lower value of the error function. The natural error function
is the square of the norm of the residual at each step, dk) = b-Ax(k). The best known
gradient method is the steepest descent method, in which the search direction at the kth step
is chosen to be the direction of the maximum gradient of the error function at the point x*).
It has been established [5-61 that the steepest descent method suffers from the following
drawback: the method will perform many small steps in going down a long, narrow valley,
even if the valley is a perfect quadratic form.

In the method of conjugate gradients [5-61 , designed to overcome this difficulty,
the direction vectors are chosen to be a set of vectors representing, as nearly as possible,
the directions of steepest descent of the points ~(01, x(l), ..., but with the overriding
condition that they be mutually conjugate. Here the term conjugate means that the vectors
are orthogonal with respect to the inner product weighted by matrix A. The basic
algorithm, assuming a real, symmetric, and sign-definite matrix A, is given by the
following set of equations:

5-8

0. Define fork = 0
(0) Initial Guess: x

Initial Residual: r(O) = b - A x

Search Direction: p -

(0)

(0) - ,(O)

6. k+k+l ,gotos tep 1.

Because of the orthogonal relationship, the exact solution is obtained after exactly
N steps for infinite machine accuracy; the method should not, strictly speaking, be
classified as iterative. It cannot be assumed, however, that convergence will always be
obtained after exactly N steps. In some cases convergence to an acceptable accuracy will

be obtained after less than N steps, while in other cases rounding errors or intrinsic ill-
conditioning of the problem at hand will affect the computation to such an extent that more
than N steps will need to be performed. For these reasons the conjugate gradient method
is treated and programmed as an iterative method. The various numerical approaches to
large-size matrices occurring in EM scattering have been reviewed by Sarkar [5-71 and Van
den Berg [5-81. The use of the conjugate gradient method in parallel processing finite
element applications has been demonstrated recently by Fox [5-31, Nour-Omid [5-lo], and
collaborators.

Another problem arises when the matrix A is not real or symmetric (the matrix is
complex in our EM scattering problem). To reduce the problem to the required conditions,

5-9

Peterson and Mittra [5-91 describe a modified conjugate gradient algorithm, in which the
original matrix A is multiplied by its adjoint, resulting in an algorithm in which the matrix
A appears not linearly, as in the original formulation, but quadratically. This creates a
serious problem for ill-conditioned matrices, for which the condition number is large: the
condition number of the matrix ATA is the square of that of the original matrix!

4. Extensions of the Conjugate Gradient Method

An important issue related to iterative methods is to understand and
improve their rate of convergence. While the iterative approach permits us to tolerate loss
of orthogonality, it does make the issue of rate of convergence critically important because
it suggests a hopelessly slow rate of convergence for ill-conditioned problems. An
important way around this difficulty is to precondition the matrix A. This refers to finding
a nonsingular symmetric (or self-adjoint in the complex case) matrix C such that A =
C-1AC-1 has improved conditioning. We can then apply the conjugate gradient (with
improved convergence) to the transformed system

where x = C-lx' and b' = C-1b. With C-1 being the approximate inverse of the original
matrix A, the coefficient matrix C-1A of the modified system C-lAx = C-lb is very close to
the identity matrix, and hence will have eigenvalues much more closely clustered than those
of the original matrix A. For problems in which the conditioning number of the original
system is too high, this can result in significant reduction in the conditioning number of the
problem and, subsequently, improvement in the convergence rate. One of the commonly
used preconditioners is diagonal scaling, in which the matrix C consists of the square roots
of the diagonal elements of the original matrix A. This causes the elements of the
transformed A to be of the order of unity, corresponding to a much smaller condition
number and faster convergence of the conjugate gradient iteration scheme.

Another important situation occurs when the coefficient matrix A is not real,
symmetric, and sign-definite at the same time. This is the case in our problem, in which
many of the coefficients are complex. When applying preconditioned conjugate gradient
methods to complex systems, there are several approaches that could be used. The
variables could be split up into their real and imaginary components to generate a real

5-10

system of twice the size. It is preferable, however, to work with complex quantities
directly. The preconditioned system obtained will consist of complex equations. The
‘best’ approach is to develop a version of conjugate gradients applicable to complex
systems of equations. The method of bi-conjugate gradients was developed for non-
symmetric, indefinite systems. The algorithm, developed by Jacobs [5-111, is given by

0. Define fork = 0
(0) Initial Guess: x

Initial Residual: r(’) = b - A x

Initial Bi-residual: r = r
Search Direction: p -
Search Bi-direction: p = r

(0)

- (0) (0) *
(0) - r(ol
- (0) - (0)

- (k+l) - (k+l) *
= r + p k p ’) P

6. k + k+l, go to step 1

where the superscript T denotes the transpose of the vector or matrix of complex conjugate
elements, the inner product of two vectors is given by x-y = xTy, and * denotes the

5-1 1

complex conjugate. It should be noted that the update and direction coefficients are now
complex coefficients, and that the dimensionality of the residual vectors and of the search
directions is now effectively doubled, resulting in more degrees of freedom for solving the
problem. This is compared and contrasted with Peterson and Mittra [5-91, in whose
algorithm these coefficients are real, and the possibly ill-conditioned matrix A appears
quadratically.

Other features of the bi-conjugate gradient method are: 1) When no loss occurs in
the dielectric scatterer, the complex matrix A becomes real. The problem is still complex,
however, because of complex terms in the right-hand-side excitation (the forcing term F in
Eq. (5.4)). 2) The coefficient matrix A in our electromagnetic scattering problem is
complex symmetric. In this case the bi-residuals and bi-directions are the complex
conjugates of the original respective quantities. This symmetry property can be utilized to
reduce the number of arithmetic operations per iteration, as it is not necessary to implement
the full algorithm.

Finally, we note that the best results can be expected when one uses the
preconditioned bi-conjugate gradient (PBCG) method, in which both approaches are put at
work simultaneously. This will be demonstrated below.

B . INITIAL RESULTS FOR TWO-DIMENSIONAL SCATTERING

1 . Description of the Problem

A simple 2-d test problem was selected for the initial investigation of the
finite element solution methods outlined in the previous section. Since these initial
calculations were aimed at evaluating the algorithms prior to their parallel implementation
on the hypercube, the test problem is comparatively small and runs quickly on a
conventional sequential processor. This employment of a scaled-down test grid provides a
good test of various iterative methods relative to one another, since the basic finite element
structure is embodied in the test grid. The absolute comparison of this example with direct
elimination results is not as straightforward, however, because the cost advantages of
iterative methods are generally realized only in larger problems.

The test case under consideration is illustrated in Figure 5.3. A dielectric circular
cylinder of radius h/4 is modeled by a mesh of triangular patch elements. A free space

5-12

c cylinder
(E = 5.0 ; p = 0.25 h)

Figure 5.3. Finite element grid of the 2-d cylinder test problem domain.
Grid is composed of 193 nodal points at which field quantities
are evaluated and 344 triangular finite elements (or patches).
The case calculated is scattering from a lossless dielectric
cylinder, although more general geometries and scatterer
properties are handled by the present program.

region with an artificial boundary radius of 0.41 h surrounds the scatterer. While the finite
element code is capable of as easily modeling more irregular geometries, this simple case
provides an adequate technique evaluation benchmark.

The grid is composed of 193 nodal points comprising 344 elements. An incident
TE-polarized plane wave of wavelength h defines the excitation. In the particular case
considered here, the permittivity of the dielectric is a real number (5.0), corresponding to a
lossless scatterer. This case is considered representative of typical calculations, although it
should be noted that different permittivity values somewhat alter the finite element matrix,
having a noticeable effect in some cases on the rate of convergence of iterative solvers.

5-13

2. Solution Methods

The finite element calculation described here breaks down naturally into four
tasks: 1) formation of the left-hand-side matrix elements, 2) formation of the right-hand-
side excitation vector, 3) the actual solution of the linear system, and 4) calculation of the
scattering cross-section from the resultant fields. Of these tasks, l), 2), and 4) have been
implemented essentially without any change from their usual formulations. The matrix is
formed using geometric information about the grid and element permittivities, while the
excitation is derived from the assumed incident field(s). In the present work, only the
solution task 3) is novel, and the subsequent discussion centers on this task.

The following iterative schemes were employed in succession to the above-
described problem: 1) simple conjugate gradient (CG) applied to the complex case [5-91,
2) preconditioned conjugate gradient with diagonal scaling (PCG), 3) the bi-conjugate
gradient (BCG) method, and finally 4) preconditioned (diagonally scaled) bi-conjugate

gradient (PBCG). The programming required to implement these solvers is quite
straightforward, as outlined below.

In each of these conjugate gradient variants, the coefficient matrix A is involved
strictly in multiplicative operations of the form Ax, where x is an N-vector. Because of this
fact, it is sufficient to store the matrix in the form of separate (unassembled) element
submatrices, and multiplications are accomplished by a simple linear combination of small
element contributions. This strategy simplifies implementation of the conjugate gradient
method in sequential as well as parallel applications. For any one of the four specific
solvers listed above, it is necessary to define the N-vectors (containing residuals, search
directions, etc.) used for the particular algorithm, and then program the corresponding
sequence of scalar and matrix-vector products. In the case of the two diagonally
preconditioned methods, two additional computational steps intervene. Prior to beginning
the iterations, the matrix A and right-hand-side are rescaled appropriately by the diagonal
elements of the original system. Following completion of the iterations, the resultant
solution must be scaled back again to yield the solution originally sought.

In applying these conjugate gradient methods for a comparative benchmark test, it
was necessary to define a uniform convergence criterion. This criterion was chosen as that
number of iterations required to obtain a solution which differed negligibly from the

5-14

solution of the same system obtained by Gaussian elimination. In practice, this amounted
to reducing the Euclidean norm of the initial residual vector by a factor of approximately
10-5. The performance results obtained in each of these cases are discussed in the next
subsection.

3 . Comparative Performance of Solution Methods

As mentioned above, the test case used in this report is that of TE-wave
scattering from a dielectric cylinder. The finite element code for this situation, generalized
to the case of a 2-d body with an arbitrary cross section, and followed by solving the
system of resulting linear equations by Gaussian elimination, was kindly provided to us by
Dr. A. F. Peterson [5-141. Our initial effort has centered on replacing the Gaussian
elimination solver by a variety of conjugate gradient solvers, anticipating that some
member(s) of this family will be the natural candidate for solving larger-scale problems by
parallel processing.

The convergence rates for the four different conjugate gradients used so far are
illustrated in Figure 5.4, in which the relative residual norm is plotted as a function of the
number of iterations. It is seen that the CG algorithm presented by Peterson and Mittra [5-
91, and based on extending the basic formulation for real, symmetric, and sign-definite
matrices, converges too slowly in comparison with the theoretical limit of no more than
about 200 iterations. The reason for this is that we deal with a complex, possibly poorly
conditioned, matrix. The next step was to apply diagonal preconditioning [5-121, which
improved the convergence dramatically, bringing the rate down to the upper theoretical limit
for the CG algorithm.

Further substantial improvement resulted from realizing that for a complex matrix
we need a reformulated algorithm, which is provided by the bi-conjugate gradient method.
We used the formulation provided by Jacobs [5-113 and recently used by Smith, Peterson,
and Mittra [5-171. The last two curves in Figure 5-4 show that the use of bi-conjugate
gradients provides convergence rates of the quality of those reported by Peterson and Mittra
[5-91 in their case studies involving smaller fully populated matrices resulting from the use
of the method of moments. For the two bi-conjugate gradient versions (BCG and PBCG)
we used both the full Jacobs algorithm [5-111 for a general complex matrix, and a

5-15

0 u a
6 c
0

d

2
3

\ \

0
0
(0

0
0
v)

0
0
d

0
‘ 0

O k
6)

* -

c, .rl

0
1 0

(u

0
1 0

r-

m O

0
0

0
9 9

r- 0
7

5-16

simplified algorithm for a complex symmetric matrix, resulting in the cutting by half of the
number of matrix-vector multiplications per iteration and, respectively, the speeding up of
the calculation by nearly a factor of two. The question is still open whether the use of non-
diagonal preconditioning might further improve the convergence rate of bi-conjugate
gradients. In this context we note that preconditioned conjugate gradients have been
recently applied [5- 15 J to problems of frequency selective surfaces and scattering from
dielectric cylinders (more precisely, a TM-polarized wave scattered from a square cylinder).
The nature of the improvement of the convergence rate due to preconditioning is similar to
ours, but further study is required to compare the two studies and explore the possibilities
of non-diagonal preconditioning.

Compared with direct Gaussian elimination, the diagonal PBCG method still takes
three times longer to converge than direct Gaussian elimination does. However, it is
expected that with more complicated situations, in general, and with 3-d scattering, in
particular, the additional effort and computation costs associated with iterative methods will
increase much more gradually than indicated by experience with direct methods. This has
been our major motivation for exploring the different conjugate gradient variants.

C. PLANS FOR FUTURE WORK

1. Parallel Program Development

The next immediate goal of the finite element analysis task is the
implementation of the above-described results on the hypercube computer. The principal
areas of effort in this near-tern work involve construction of the parallel finite element code
proper, and the development of input decomposition tools that will serve as the "front end"
to the finite element code. The issues associated with these developments are discussed
below.

Much of the "superstructure" finite element programming needed for the hypercube
code is directly transferable from already completed work in finite element stress/strain
analysis [5-41. Only those parts of the programming uniquely related to the
electromagnetics application will require extensive rewriting. Routed crystalline
communications will be used to implement the various conjugate gradient methods in
parallel. The parallel efficiency of these iterative approaches with domain decomposition
has been well documented already [5-31, and is not considered a central issue at this stage.

5-17

It is to be expected that finite element calculations with concurrent efficiencies exceeding
90% for reasonable problem sizes will be realized. Of more direct interest are questions
associated with accelerating the iterative solution procedure, and with facilitating the
problem decomposition process.

Augmentation of the conjugate gradient methods described above by
preconditioning will form an important part of the next year's work. A variety of non-
diagonal preconditioning approaches [5- 131 are currently being examined for parallel
implementation. In addition to work on preconditioning, work will be devoted to
departures from the basic conjugate gradient formulation. One such generalization is the
modification to allow solution of multiple excitations efficiently, as described earlier in
Section V.A. Another area of considerable interest is the departure from a purely iterative
scheme for hybrid direct / iterative methods. Previous work in hypercube finite element
stress analysis suggests that combining Gaussian elimination on subdomain interiors with
conjugate gradient iteration on interprocessor boundaries can accrue many of the benefits of

both direct and iterative solvers. Extension of these hybrid techniques to the complex
electromagnetics setting represents an important priority following development and
demonstration of the basic parallel iterative code.

Input decomposition represents the other important area for research and
development in the next year. Among the desiderata in a concurrent finite element analysis
package is a near-transparency at the user level to the fact that the problem is decomposed.
This implies a certain amount of automation (or at least computer aid) in the decomposition
process. While "carving up" the domain for decomposition is a conceptually fairly simple
process, doing so rapidly and optimally may be difficult in practice. Our approach in the
next year will be to integrate the domain decomposition process with the grid generation
task. Processor subdomain assignment information is easily and naturally couched within
the already existing conventions for finite element mesh definition. The development of
basic graphical tools for the on-screen interactive definition of decomposition subdomains
will represent a significant advance in this regard, eliminating the necessity to decompose
conventional finite element input data "by hand.''

5-18

2. Proposed Test Problems

As just discussed, the main thrust in the immediate future will be to
complete the test case currently under way. However, a number of additional test problems
come to mind and will be addressed as this stage of the investigation nears completion. A
particularly interesting problem is that of scattering from a conducting cylinder with a
dielectric coating. This problem has been treated analytically in the last two decades [5-181,
and some of these analytic results will need to be recoded, so as to provide numerical
comparison with the finite element results to be provided by us. Recent numerical
approaches to this problem are those of Jeng and Chen [5-201 and of Jin and Liepa [5-211.
The first study uses a fundamental variational principle to derive a hybrid element method.
The second uses an external boundary very close to the scatterer and follows its shape.
Both the analytic and numerical results will be used as test cases for our parallel code.

Some recent studies in EM wave scattering include some new ideas which will need
some examination on our part. One such approach, that of using boundary elements [5-
221, is a flexible variant of the finite element method. Another approach, that of using on-
surface boundary conditions, allows the external artificial boundary to shrink all the way to
the surface of the scatterer [5-231. This approach has been successfully used for simple
geometric shapes, and one of its limitations has been the requirement of a convex scatterer.

In a recent study Peterson [5-161 has performed a comparative study of three
different methods for TE-wave scattering from inhomogeneous dielectric cylinders. The
first method is based on a volume discretization of a magnetic field integral equation [5-241.
The second method is a volume discretization of a differential equation formulation
incorporating a "near field" radiation condition of the Bayliss-Turkel type [5-21, and is the
method used by us in our test case. The third method is a hybrid procedure combining the
discretization of a volume differential equation and a surface integral equation. Peterson
finds that the methods incorporating differential equations have significant computational
advantages in terms of storage over volume integral formulations. In addition, the hybrid
approach requires less storage than the pure differential equation method, but may suffer
from uniqueness problems for electrically large scatterers. It will be important to verify
these conclusions in the context of parallel computation, especially comparing the hybrid
method with the pure differential equation method currently used by us.

5-19

In summary, the purpose of first implementing the parallel 2-d code, which is now
nearing completion, is to provide the essential background for formulating and
implementing the more important, and considerably more complicated, three-dimensional
scattering parallel code. Our intent is to consider specifically a coated conductor, where the
coating can be a dielectric or magnetic material, possibly inhomogeneous, anisotropic, and
lossy. With some of these cases currently available in a sequential, three-dimensional finite
element code [5-251, our purpose is to combine these results with our currently gained
insights of the parallel problem structure, leading to the formulation and construction of a
parallel three-dimensional finite element scattering analysis code.

5-20

REFERENCES

[5-11 T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite
Element Analvsis, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[5-21 A. Bayliss and E. Turkel, "Radiation boundary conditions for wave-like
equations," Commun. Pure and ADD^. Math., Vol. 33, pp. 707-725, 1980; A.
Bayliss, M. Gunzburger, and E. Turkel, "Boundary conditions for the numerical
solution of elliptic equations in exterior regions," SIAM J. Appl. Math., Vol. 12,
pp. 430-451, 1982.

[5-31 G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.
Walker, Solving; Problems on Concurrent Processors, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[5-41 G. A. Lyzenga, A. Raefsky, and B. Nour-Omid, "Implementing finite element
software on hypercube machines," Proc. Third Conf. on Hypercube Concurrent
Commtations and Applications, Pasadena, CA, January 19-20, 1988 (in press).

[5-51 C. F. Smith, A. F. Peterson, and R. Mittra, "A conjugate gradient algorithm of
multiple incident electromagnetic fields," preprint, 1988.

[5-61 A. Jennings, Matrix ComDutation for Engineers and Scientists, John Wiley &
Sons, New York City, NY, 1977; G. H. Golub and C. F. Van Loan, Matrix
Computations, Johns Hopkins University Press, Baltimore, MD, 1984; W. H.

Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes:
The Art of Scientific Commting, Cambridge University Press, Cambridge, U.K.,
1986.

[5-71 T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, "Survey of numerical
methods for solution of large systems of linear equations for electromagnetic field
problems," IEEE Trans. Antennas and ProDag;ation, Vol. AP-29, pp. 847-856,
1981.

5-2 1

[5-81

15-91

P. M. Van den Berg, "Iterative computational techniques in scattering based upon
the integrated square error criterion," IEEE Trans. Antennas and Propagation, Vol.
A€'-32, pp. 1063-1071, 1984.

A. F. Peterson and R. Mittra, "Method of conjugate gradients for the numerical
solution of large-body electromagnetic scattering problems," J. Opt. SOC. Am.,
Vol. 2A, pp. 971-977, 1985; Tonvergence of the conjugate gradient method
when applied to matrix equations representing electromagnetic scattering
problems," IEEE Trans. Antennas and Propagation, Vol. AP-34, pp. 1447-1454,
1986.

[5-lo] B. Nour-Omid, A. Raefsky, and G. A. Lyzenga, "Solving finite element equations
on concurrent processors," in Proc. SymD. on Parallel Computations and Their
ImDact on Mechanics, Boston, December 13-18, 1987; ASME, 1988.

[5-113 D. A. H. Jacobs, "The exploitation of sparsity by iterative methods," pp. 191-222,
in I. S . Duff (ed.), SDarse Matrices and Their Uses, Academic Press, London,
1981.

[5-121 J. G. Lewis and R. G. Rehm, "The numerical solution of a non-separable elliptic
partial differential equation by preconditioned conjugate gradients," J. Res. Nat.
Bur. Stand., Vol. 85, No. 5, pp. 367-390, September-October, 1980.

[5- 131 D. J. Evans (ed.), Preconditioning Methods: Analysis and ADplications, Gordon
and Breach, New York, 1983.

[5-141 A. F. Peterson, private communication, 1988.

[5-151 A. Kas and E. L. Yip, "Preconditioned conjugate gradient methods for solving
electromagnetic problems," IEEE Trans. Antennas and Propagation, Vol. AP-35,
No. 2, pp. 147-149, February 1987.

[5-161 A. F. Peterson, "A comparison of integral, differential and hybrid methods for TE-
wave wave scattering from inhomogeneous dielectric cylinders," J. Electromagnetic
Waves & ADDlications, in press, 1988.

5-22

I [5-171 C. F. Smith, A. F. Peterson, and R. Mittra, "The biconjugate gradient method for
electromagnetic scattering," submitted for publication, 1988.

[5-181 C. W. Helstrom, "Scattering from a cylinder coated with a dielectric material," in
E. C. Jordan (ed.), Electromagnetic Theorv and Antennas, Part 1, Pergamon
Press, New York City, NY, 1963; T. C. K. Rao and M. A. K. Hamid, "G.T.D.
analysis of scattering from a dielectric-coated conducting cylinder," IEEE Proc.,
Vol. 127, No. 3, pp. 141-153, June 1980; N. Wang, "Electromagnetic scattering
from a dielectric-coated circular cylinder," IEEE Trans. Antennas and Propagation,
Vol. AP-33, No. 9, pp. 960-963, September 1985.

[5-191 C.-C. Su, "Calculation of electromagnetic scattering from a dielectric cylinder using
the conjugate gradient method and FFT," IEEE Trans. Antennas and Propagation,
Vol. AP-35, No. 12, pp. 1418-1425, December 1987.

[5-201 S.-K. Jeng and C.-H. Chen, "On variational electromagnetics: theory and
application," IEEE Trans. Antennas and Propagation, Vol. AP-32, No. 9, pp. 902-
907, September 1984.

[5-211 J.-M. Jin and V. V. Liepa, "Application of hybrid finite element method to
electromagnetic scattering from coated cylinders," IEEE Trans. Antennas and
ProDagation, Vol. 36, No. 1, pp. 50-54, January 1988.

[5-221 K. Yashiro and S. Ohkawa, "Boundary element method for electromagnetic

scattering from cylinders," IEEE Trans. Antennas and Propagation, Vol. AP-33,
NO. 4, pp. 383-389, April 1985.

[5-231 G. A. Kriegsmann, A. Taflove, and K. S. Umashankar, "A new formulation of
electromagnetic wave scattering using an on-surface radiation boundary condition
approach," IEEE Trans. Antennas and Propagation, Vol. AP-35, No. 2, pp. 153-
161, February 1987.

[5-241 A. F. Peterson and P. W. Klock, "An improved MFIE formulation for TE-wave
scattering from lossy, inhomogeneous dielectric cylinders," IEEE Trans. Antennas
ProDagation, Vol. AP-36, No. 1, pp. 45-49, January 1988.

5-23

[5-251 "EM-TRANAIR; A Computer Program for the Solution of Maxwell's Equations in
Three Dimensions: Vol. 1 , Theory Manual," Boeing Report, Seattle, WA, July
1987.

5-24

SECTION VI

TEST CASE: SCATTERING FROM A CONDUCTING SPHERE

A. DESCRIPTION OF THE TEST CASE

In this section we present results from both the parallel Numerical Electromagnetics
Code (NEE) and the parallel Finite Difference Time Domain (FDTD) code for the test case.
The test case is scattering from a perfectly conducting sphere. We compare two
components of the near scattered fields, two far electric field components, and the bistatic
radar cross section (RCS). We also compare these results to the analytic solution.

The test case is a conducting sphere with a diameter equal to the wavelength of the
incident plane wave radiation. The incident plane wave has a frequency equal to 300 MHz.
The incident plane wave has a wavelength of 0.99933 m and a wave number of 6.2874
rad/m. These parameters produce a sphere with a radius of 0.49967 m. Ka, the wave
number of the incident field times the radius of the spherical scatterer, equals 3.1415927.

Since the scatterer is symmetric with respect to the origin, we arbitrarily choose the
incident field to propagate from the -y direction to the +y direction. The incident electric
field points in the +z direction with a magnitude equal to 1 .O V/m. The incident magnetic
field points in the +x direction with a magnitude equal to 1/376.7303 A/m.

B . RESULTS AND COMPARISONS

1. Test Case Using the Finite Difference Time Domain Code

To model the sphere in the FDTD code, we break up the sphere into
conducting cubic cells. Sixty cells span the diameter of the sphere. The FDTD code
replaces the smooth spherical surface with protruding cubic shapes. We also model the
empty space surrounding the conducting sphere with these cubic cells. The program marks
unit cells with centers within the radius of the sphere as part of the scatterer. Unit cells
with centers outside the spherk radius are part of the vacuum. We use 80 x 80 x 80 unit
cells to discretize the computation space. We use 60 x 60 x 60 cells to enclose the spherical

6- 1

scatterer. With these parameters, the unit cell size is 0.016656 x 0.016656 x 0.016656 m
and the global lattice size is 1.3324 x 1.3324 x 1.3324 m.

For this problem the Courant condition determines 120 iterations per cycle of the
incident field. Therefore, time increments 0.02778 nsec per time step iteration. To
determine the convergence of the FDTD code, we observe the monostatic RCS. This value
is the radar cross section observed from the direction of the plane wave source. Figure 6.1
shows the value of the monostatic RCS as a function of the iteration count. From this plot,
we observe that after -900 iterations the near scattered fields achieve steady state. When
the near fields achieve steady state, the value of the monostatic RCS is approximately
0.677 m2.

2. Test Case Using the Numerical Electromagnetics Code

To model the spherical scatterer in NEC, we build an eighth of a unit
sphere and then use the scaling option in NEC to create the proper radius and the
symmetry option in NEC to build the complete scatterer. The scaling option multiples all
lengths by a user-specified constant value. The symmetry option reflects the eighth of a
unit sphere through three planes passing through the origin and perpendicular to the
Cartesian coordinate axes. We enter the scaling option using the GS card in NEC. We use
the GX card to enter symmetry options. For the eighth of the spherical scatterer, we use
arbitrarily shaped surface patches to construct the object. We constructed this scatterer
using the structure editor module in the Electromagnetic Interactive Analysis Workstation
(EIAW). Figure 7.5 in Section VI1 shows the construction commands for PATRAN.
Figure 7.6 shows the arrangements of the sixty surface patches for the eighth of the
spherical scatterer. Figure 7.8 shows a portion of the geometry section of a NEC input file
specifying the sphere [6-11.

We use the card editor module of the EIAW to place the incident field excitation in
the NEC input file. The parameters for the direction and polarization of the incident field
are the following: 8, the angle off the z axis, equals 900 degrees; 4, the angle off the x axis,

equals 2700; and q, the angle off the 8 vector, equals 1800. We used this same field in the
FDTD run.

A

6-2

1 .oo

0.80

0.60

0.40

0.20

0.00
0 1000 2000

Iteration Number

Figure 6.1. Plot of the monostatic radar cross section versus the number of
iterations. Each iteration is 0.0278 nsec.

Compared with the 0.677 m2 value for the monostatic RCS from the FDTD code,
the NEC code gives a value of -1.74 dB or 0.6699 m2.

3. Test Case Using the Exact Solution

We attribute the exact solution for the spherical scatterer to D. Mie [6-21.

The solution uses spherical wave functions and boundary value techniques to find the terms
of the resultant Mie series for the scattered field. A detailed mathematical discussion of the
solution can be found in Ruck et al. [6-31 or Bowman et al. [6-41.

Dr. Sembiam Rengarajan from California State University Northridge furnished a
FORTRAN code for the evaluation of the series. The code only generates scattered near
fields. The code was tested by comparison with near field plots in [6-41.

Compared with the 0.677 m2 value from the FDTD code and with the 0.6699 m2
value from the NEC code, the monostatic RCS from exact solutions is 0.6667 m2 [6-31.

6-3

The percent difference between the exact RCS and the RCS from the NEC code is 0.47%.
The percent difference between the exact RCS and the RCS from the FDTD code is 1.03%.

4. Contour Plots of Different Fields for the Spherical Scatterer

Thce following figures shows sets of plots obtained from the NEC, FDTD,
and analytic codes. Figures produced by the NEC code and FDTD code appear together.
Figures produced by the analytic code follow the NEC and FDTD results. Figures 6.2
through 6.7 show contour plots for the magnitude and phase of the z component of the
scattered electric field. Figures 6.8 through 6.13 show contour plots for the magnitude and
phase of the x component of the scattered magnetic field. These near field values occur in a
plane in front of the spherical scatterer at y = -0.6162556 m. Figures 6.14 and 6.15 give
contour plots of Eo and Eg for NEC and FDTD codes only. These fields do not include the
radial dependent term eib/r. K is the wave number of the incident field and r is the radial

distance from the origin at the center of the spherical scatterer. Figure 6.16 shows the
bistatic RCS for NEC and FDTD codes.

Because the fields produced by the three codes may differ in phase by some
constant angle, we freely shift all phase values produced by a single code by the same
constant. This shift produces plots for easier comparison. For the following near field
plots we shifted the phase values from NEC by -270 and the phase values from the analytic
code by 1550.

5 . Discussion of Results

NEC compares well with the analytic code in both magnitude and phase for
the near scattered fields. However, the FDTD code has slightly differing field values for
magnitude and phase. We can trace the difference in the near fields to the cubic
approximation to the true spherical scatterer.

We can look at the percent difference of a few field components for the three codes.
NEC gives 0.20384 V/m for the magnitude of the z component of the electric field at x =

-0.61625 m, y = -0.61625 m, and z = -0.60793 m. This point is the lower-leftmost value
in the NEC contour plot of Figure 6.2. FDTD gives 0.20397 V/m for the same magnitude.

6-4

ORIGINAL PAGE IS
OF POOR QUALmY

6-5

ORIGINAL PAGE IS
OF POOR QUALrrV

m
3

6-6

ORIGINAL PAGE IS
OF POOR QUALnY

W m
v,
W
W
w

8
ru
0

c u x
0

ORIGINAL PAGE IS
OF POOR QUALITY

6-8

ORIGINAL PAGE IS
OF POOR QUALITY

6-9

ORIGINAL PAGE IS
OF POOR QUALrrV

6-10

ORIGINAL PAGE IS
OF POOR Q U A L I N

I I M ! ' I I I I I I I I I I I I I IIIIl1IIIIIIIIIIIILLuoBFIlIIIIIIIIIIII ! 180

+I
0

i2
3
0

C
.r(

E

3

\o m m
CJ

2 +
0
Y

..
M
3
0

0 ru
d CI

i a
M
.r(s
ru
0
M
6)
cd
C
Y

.C1

%
3

h s

ru
0
i2
3
0
d
.r(

E
00

N

h

E"

d

8

0
E

N
6)
E

M

B
E!

8
X
6)

0
a

E
Y

d

6-1 1

c -
t -240 Ob2 ’ .240--

ORIGINAL PAGE IS
OF POOR QUALITY 6 a

X
a,
B

6-12

ORIGINAL PAGE IS
OF POOR QUALITY

6-13

ORlGiNAL PAGE IS
OF POOR .* .QUALITY

6-14

ORIGINAL PAGE IS
OF POOR QUALITY

6)

ru
0
5

X
Q)

5
Y

CI
0
a

5
E

Y

0

E
8

0
Y

cu
0 X E m a
B
0

6)

ru
0
5

+

8
ru
0 2

Q-i
0

vi

3 i2
B
v)

0
Y

3 u 3 ii
B
M
Y
cd

bn
8 a

m
(d
4

%
3
cu
0

X
N ..

v)

d g
d

0 ru

Y

m
d
cd
1
tr

e
.r(

N
cd

.s a
% a

!I

-E a

v) 3
cu
0

E 3
v)
6)
c)

E!

0 u

L

m Y

d
0
a

v)

cd
B
.s
2
8
0

2
8
0
Y

u
v) d

(d
1
tr

L M
CL
.d

6-15

ORIGINAL PAGE IS
OF POOR QUALITY

9
a,

u
G
.d
Y

Y
E
2
8

2
s

!3

E
3

s

a

U
cd

a,

cc
0
Y

e
0 a

x
0

cc
0

(c;

\d
2

3

1
M
.I crc

6-16

ORIGINAL PAGE IS
OF POOR QUALITY

6-17

L

6-18
ORIGINAL PAGE IS
OF POOR QUALITY

0’
2
rc
0

E
.d

H

0
U

8
E
ct: 0

Q)

M

a

.-(

2
Q) s
a
2

ORIGINAL PAGE IS
OF POOR QUALITY

0'
00

ru
0

d

Y &
m
C
0
.r(

+

6-19

This point is the lower-leftmost value in the FDTD contour plot of Figure 6.2. The analytic
code gives 0.20805 V/m for the same magnitude. This point is the lower-leftmost value in
the analytic solution contour plot of Figure 6.3. The percent difference between the NEC
and analytic value is 2.0%. The percent difference between the FDTD and analytic value is
2.0%.

We can also look at the value of the z component of the near scattered field at x =
0.0, y = -0.61625, and z = -0.0083. This point is near the center of the contour plots of
Figures 6.2 and 6.3, The z component attains its maximum value on’ the contour plot at
this point. The values from the NEC, FDTD, and analytic codes for the z component at
this point are as follows: 0.71693 V/m, 0.74393 V/m, and 0.70390 V/m. The percent
difference between the NEC and analytic value is 2.0%. The percent difference between
the FDTD and analytic value is 5.7%.

Intuitively, the sphere, modeled in the FDTD code, scatters more of the incident
field towards the source than the sphere modeled in NEC. The bistatic RCS plots of Figure
6.16 also confirm this observation. The RCS values for varying theta and phi from the
FDTD code are consistently greater than the RCS values from the NEC code.

From the CPU times, we also conclude that the FDTD code is less efficient than the
NEC code in finding the scattered fields from the sphere. However, the designers of NEC
explicitly wrote the code to deal with steady-state analysis of conducting structures.
FDTD, on the other hand, can do either a steady-state or a transient analysis of either
perfectly conducting scatterers or inhomogeneous dielectrics.

6-20

REFERENCES

[6-11 G. J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC) - Method
of Moments, Lawrence Livermore National Laboratory, Livermore, CA, 198 1.

[6-21 J. A. Stratton, Electromagnetic Theorv, McGraw-Hill Book Company, New York,
1941.

[6-31 G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krickbaum, Radar Cross
Section Handbook, Vol. 1, Plenum Press, New York City, NY, 1970.

[6-41 J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and
Acoustic Scattering bv Simple Shapes, North Holland Publishers, Amsterdam, the
Netherlands, 1969.

6-2 1

SECTION VII

THE ELECTROMAGNETIC INTERACTIVE ANALYSIS WORKSTATION

A. OVERVIEW

With the Numerical Electromagnetics Code (NEC) and the Finite Difference Time
Domain (FDTD) Code available on the Mark III Hypercube, there is a need to ease the user
interaction with these programs. Software tools must exist for the user of these programs
to interactively create input files, remotely execute these analysis codes, and graphically
display the results of the analysis. To this end, we created an Electromagnetic Interactive
Analysis Workstation (EIAW) on a Sun Microsystem 3/160 workstation. We integrated
the NEC code into the workstation environment.

As the complexity of scattering objects increases, NEC and other analysis codes
require a graphics input generator to pictorially create the scattering or radiating object. A
user also may want to visually verify the correctness of an existing structure specification.
Many software packages exist that allows the user to create and view a three-dimensional
object and produce a output file with structure information. However, after considering
many Computer Aided Design (CAD) and Finite Element (FEM) packages, we settled on
PATRAN-PLUS from PDA Engineering. This graphics package (GPK) is one of the
modules to aid the interactive creation of input files.

Because we cannot expect any off-the-shelf graphics software to create a correctly
formatted NEC input file, we must construct a program called a translator that allows GPK
and NEC to communicate. Our particular translator creates the geometry portion of the
NEC input file from information stored in GPK's output files. PATRAN's output files are
the patch area file and the application-independent neutral 'file. This translator also creates
PATRAN neutral files from the geometry portions of the NEC input file. This translator
package is the next module to aid the interactive creation of input files.

Because the user cannot graphically specify with GPK all the input cards in a
typical NEC input deck, we created an input editor. A card in an NEC input file is a one-
line entry beginning with a two-column header and followed by a set of numerical fields.
Typical headers include: SP for surface patch, GW for a set of wires, and EX for excitation
on a structure. Examples of cards appear below. This editor, called a card editor, allows

7- 1

the user to add or delete additional cards to an existing NEC input file. The editor gives the
user a full list of input cards, prompts the user for the appropriate entry in each field of a
card, and checks each field for the correct syntax. Together with GPK and the translator,
the card editor allows the user to create a complete NEC input file.

Because the EIAW software exists on a Sun workstation and the host to the
Hypercube is a Counterpoint System XIX workstation, we must create a run control
package. Starting a Hypercube application is usually an interactive process with the
operator logged onto the host of the Hypercube. Therefore, the NEC code or any other
application must sit on the Counterpoint. However, the EIAW modules exist on a Sun
connected to the Counterpoint via Ethernet. We use the UNIX system and networking
commands on the Sun to allow users to remotely submit hypercube programs from the
workstation environment. Figure 7.1 shows the connections between the Sun 3/160; the
Hypercube control processor (CP), a Counterpoint System XIX; and the Mark I11
Hypercube. The external hard disks hanging off the eight-node subcubes are

enhancements which are important to Numerical Green's Function solutions for NEC.

Because electromagnetic codes produce pages of numerical output for the near and
far fields, the user must have a graphics tool to visualize these fields produced by the
scattering or radiating structure. For the designer, the ability to graphically analyze the
output from a particular object will greatly aid in the interactive modification of the
scattering structure. GPK also will serve to display the results from the analysis code.

One type of graphical display is colored contour plots. The user plots values of a
quantity as a function of coordinates. PATRAN indicates the value by a corresponding
color from a spectrum displayed on a color bar to the side of the PATRAN graphics screen.

PATRAN requires two files to create colored contour plots. The first file is a
neutral file. It contains the specification of the grid on which the user superimposes the
field values at the grid node points. The second file, called a results file, contains the node
IDS and columns of field values associated with a particular node. Because we can assign
several different field values to the same node number, we can create several plots of these
distinct fields on the same console screen by requesting PATRAN to plot the various
columns. To produce these two files, we use an output generation program utilizing some
of NEC's output routines and new routines to properly format the different field values.

7-2

Mark III
Hypercube

Figure 7.1. Diagram of the Electromagnetic Interactive Analysis
Workstation, Hypercube Control Processor, and Mark I11
Hypercube

As the number of software modules increases, we want the user to freely move
around in the workstation environment without the need to memorize complicated computer
commands. Therefore, we integrated the above modules in a menu and prompt driven
environment. In this environment, the user can move from one analysis tool to the next
using a mouse device. Figure 7.2 illustrates possible analysis paths between the different
modules.

B . MENUENVIRONMENT

The Sun 3/160 comes with a software package, called SunView, to create custom
windows and menus on the console screen [7-11. Windows are distinct rectangular
workspaces. Windows may also contain smaller subwindows. Depending on the type of
subwindows, the user can run text-editing programs or application programs, plot
graphics, or execute UNIX system commands within particular subwindows. A menu is a
list of command options. Choice of a particular option with a pointing device, such as a
keyboard or mouse device, initiates the execution of the command. Work within a

7-3

NEC to GPK
Translator Input Editor

I
I

Run Control

-

b Display Structure

c
Result

Generation b Output Display

Figure 7.2. Analysis paths between modules of the Electromagnetic
Interactive Analysis Workstation

subwindow may involve the use of custom menus to ease user interaction. Using these
tools, we created custom windows, subwindows, and menus for the modules of EIAW.

When the EIAW is invoked, a large window appears on the console. This window
contains one subwindow of menus, messages, and prompts and a second subwindow for
entering UNIX system commands. Figure 7.3 shows this first window. The menu orders
all the separate modules into the following categories: Setup Menu, Run Menu, and Output
Menu. Choice of any of the menu options with the mouse device brings up a lower level
menu.

We first discuss the Setup Menu and the EIAW modules it launches. We will
discuss the Run Menu and Output Menu later in this section. Figure 7.4 shows the
contents of the Setup Menu. Choice of Select Directory brings up other menu items that
allow the user to move around in the file system directory hierarchy. Choice of Card Editor
invokes the interactive card editor program. Choice of Display Structure or Structure
Editor invokes GPK for object display or creation. Choice of File Translation invokes the
NEC to GPK and GPK to NEC translator. Return moves back up to the Main Menu. We
discuss these modules in detail below.

7-4

ORIGINAL PAGE IS
OF POOR QUALITY

MESSAGES: Choomo mnalyolm option.
MENU PATH: Noc Uonu

Figure 7.3. Main window of the EIAW showing the Main Menu

7-5

Figure 7.4. Main window of the EIAW showing the Setup Menu

ORIGINAL PAGE IS
OF POOR QUALtTY

7-6

C . STRUCTURE EDITOR

A structure editor is software capable of accepting interactive three-dimensional
graphics commands from an operator and creating a text or binary file containing the
numerical description of the object. For NEC these three-dimensional objects may be flat
or curved patches or straight wires. The structure editor also must present rotated and
translated views of the object for verification of correctness. Because a finite element
modeler embodies all the above features, we incorporated PATRAN as the structure editor
in the EIAW. In the following paragraphs, we will briefly explain PATRAN's modeling
method and then present a few simple examples [7-21. The user should refer to the
graphics package's user manual for a full description of its capabilities.

1. Modeling Commands

Modeling a scattering or radiating structure in PATRAN goes through the
following sequence: geometric creation of a complex three-dimensional object,
superimposing a mesh of finite element nodes on the geometric structure, connecting the
nodes to produce finite element shapes, and assigning property numbers to each finite
element shape. We can associate numbers or text strings to groups of finite element
shapes. A property number identifies the set of numbers or text strings.

Geometric creation of a complex three-dimensional object requires PATRAN
commands of the following form:

Object Type, New Object ID, Generation Method, Generation Parameters, Original
Object

Object Type is one of Grid (GR), a point object; Line (LI), a one-dimensional object; Patch
(PA), a two-dimensional object; or Hyperpatch (HP), a three-dimensional object. The
tangent vectors to the surface of these objects may vary with position. New Object ID is
either a wild card character, #, or a list of numbers identifying the newly created objects.
Generation Method specifies the method for creating the new objects. We give examples of
generation methods in examples below. Generation Parameters give additional information
required for the specific method of creating the new object. Original Object gives the IDS

7-7

of already existing objects from which the user creates new objects by rotation, translation,
or duplication operations.

Creating finite element nodes on the structure requires a command of the following
form:

GFEG, Object ID,, Nl/N2/N3/rl/r2/r3

PATRAN requires the GFEG characters. Object ID is the number of the object created by
the above geometric creation commands. N1 is the number of finite element nodes in the
first parametric direction of the object. R1 is the ratio of the distance between the last pair
of nodes and the first pair of nodes. If r l is not unity, the distances increment or decrement
in a geometric progression from the first pair of nodes to the last pair of nodes. If the
object is multidimensional, N2 and N3, respectively, specify the number of finite element
nodes in the other two parametric directions; r2 and r3 specify the geometric progression of

distances between nodes in the other parametric directions.

Creating finite element shapes connecting nodes on the structure requires a
command of the following form:

CFEG, Object ID, Finite Element Type

PATRAN requires the CFEG characters. Object ID is the number of the object created by
the geometric creation commands. Finite Element Type specifies the type of finite element
connecting nodes. Finite element types include BAR, a one-dimensional element
connecting two nodes; TRI, a two-dimensional element connecting three nodes; and
QUAD, a two-dimensional element connecting four nodes.

Assigning property IDS to finite element shapes requires a PATRAN command of
the following form:

PFEG, Object ID, Finite Element Type, Numerical Values Or Text List

PATRAN requires the PFEG characters. Object ID is the number of the object created by
the geometric creation commands which we discussed above. Finite Element Type
specifies the type of finite element shape. This type must match the type specified in the
CFEG command. Numerical Values Or Text List is a list of attributes associated with all

7-8

finite element shapes of the given type on the specified geometric objects. We give
examples of these PATRAN commands in the paragraphs below.

2. Neutral File

PATRAN communicates geometry and structure information to other codes
through its neutral file. We discuss other PATRAN files for communicating patch area
information, generating output results, and replaying an interactive session in the
paragraphs below and in Section VIII. For communication with other analysis codes, the
application-independent neutral file contains information on geometric entities, such as
grids, lines, and patches; finite element nodes and shapes, such as BAR, TRI, and QUAD;
and finite element property values. A BAR element connects two finite element nodes; a
TRI element connects three nodes; and a QUAD element connects four nodes. Other
analysis codes communicate with PATRAN by generating a neutral file.

The neutral file is a strictly formatted text file. The file contains groups of lines
describing different graphics entities. For example, groups of lines describing geometric
lines or patches or groups specifying finite element nodes or shapes may exist in a typical
neutral file. Each group contains a header line with the following integer information:
Packet Type, Identification Number, Additional ID, Card Count, and five additional fields
for other information. A 0 in any of these fields indicates that the field is not in use. There
are numerous Packet Types. We will use the following Packet Types: 1 for a finite element
node, 2 for a element shape, 4 for element property specification, 31 for grid data, 32 for
line data, and 33 for patch data. Identification Number contains the unique number for a
grid, line, patch, node, or finite element shape. Card Count specifies the number of
additional cards in the group following the header card. Later we will give examples of
entries in the other fields.

3 . NEC Input File

The eventual goal of creating a structure in GPK is to produce a NEC
formatted input file. At this point, we will give a brief description of the format of a NEC
input file [7-31. The user should refer to NEC's user manual for a full description of
NEC's input file format.

7-9

NEC's input file contains lines of text describing a structure, followed by additional
lines controlling the flow of the analysis code. Each line contains a two-character header,
which specifies the function of the line of text; five-character integer fields for integer
values; and ten-character real fields for real values.

A surface patch (SP) card is an example of a text line specifying a structure. After
the SP characters, the card contains an integer: 0 for an arbitrarily shaped surface patch, 1
for a rectangular flat surface patch, 2 for a triangular patch, or 3 for a quadrilateral patch.
Real values for the coordinates of the center of the patch, the elevation and azimuthal angles
for the normal vector at the center, and the patch area follow a 0 in the integer field. Real
values for the coordinates of comer points follow a 1,2, or 3 in the integer field. For these
three cases an SC card must follow an SP card to provide room for the additional real
fields. We illustrate examples of structure cards in Section VII.C.4.

A excitation (EX) card is an example of a program control card. A 1 in the first
integer field specifies a plane wave excitation. The number of 8 angles and number of $
angles follow the first integer field. Real values for the direction and polarization angles
follow the integer fields. Other types of excitations are possible. We illustrate examples of
program control cards in Section VII.C.4.

4. Creating Patches and Wires for NEC

In the current implementation of EIAW, there are three methods to specify a
scattering or radiating structure. These three methods correspond to the three types of NEC
elements: arbitrarily shaped surface patches, flat surface patches defined by their comer
nodes, and straight wire segments. An arbitrary surface patch is a structure element
defined by its area, the coordinates of its center point, and the orientation of a normal vector
at its center. The geometric two-dimensional patches in PATRAN will correspond to the
arbitrarily shaped surface patches in NEC. The TRI and QUAD finite element shapes in
PATRAN will correspond to the flat surface patches in NEC. The BAR finite element
shapes and their associated property specifications in PATRAN will correspond to wire
segment sets in NEC.

7-10

Figure 7.5 illustrates a typical set of PATRAN geometric input commands. The
terse commands specify an octant of a sphere using the arbitrarily shaped surface patch
method. Commands (1) and (2) instruct the graphics package to create a 900 arc of radius
1 in the x-z plane. Command (3) instructs the graphics package to rotate the arc about the z
axis 150. Commands (4), (6), (8), (lo), and (12) break the 150 wedge into ten smaller
patches. Figure 7.6 shows the ten patches labeled 10 to 19. Commands (5), (7), (9),
(1 l), and (1 3) remove the old patches after every break. The last command, (14),
replicates the ten patches on the wedge to make a total of sixty patches for the octant of the
sphere. Figure 7.6 illustrates the resulting set of sixty patches.

GPK must pass information about the objects in its data base to translators and
analysis codes. For arbitrarily shaped surface patches, PATRAN creates an area output file
and a neutral file containing grid point and surface patch information. Figure 7.7 shows a
truncated copy of a PATRAN area output file. The patch ID appears in the first column and
the area of each surface patch appears in the second column. Other columns, which NEC
does not require, contain further information on the curvature and twist of each patch.
Figure 7.8 contains a truncated copy of a neutral file. The first section contains data groups
for grid entities. Each group contains a grid ID and spatial coordinate information. A
geometric line is a curved one-dimensional object placed in the three-dimensional modeling
space. The second section contains a data set for a line. The set contains a line ID, twelve
parametric line coefficients, and endpoint grid IDS. The last section contains a data set for a
geometric patch. The set contains a patch ID, forty-eight parametric patch coefficients, and
four comer grid IDS. Each of the sixty patches in the sphere octant example produces a
similar data set.

NEC has the ability to analyze symmetric structures by reflecting the symmetric
elements among planes perpendicular to the x, y, or z axis. We will use the above model
of one-eighth of a sphere to construct a perfectly conducting sphere scatterer. In the
subsequent discussion of the Electromagnetic Interactive Analysis Workstation (EIAW),
we will continually return to this example of the sphere scatterer.

7-1 1

. . . .

GR,#,,1

PA,#,ARC,3(0)/0/0/1/15.0,1
PA,2#,BR,.3333/.3333/2,1
PA.1 ,DEL
PA,2#,BR,.5/.5/2,3
PA3,DEL
PA,2#,BR,.5/.5/2,2
PA.2.DEL

LI,#,ARC,3 (O)/O/ 1/0/-90,l

(1 0) PA,&,B R, .5/. 5/2,4T5
(1 1) PA.4T5,DEL
(12) PA,8#,BR,.5/.5/2,6T9
(13) PA.6T9,DEL
(14) PA,5O#,R0,5(0)/1/15.O,lOTl9

. . .

Figure 7.5. Commands to construct an octant of a unit sphere

Figure 7.6. Octant of a sphere and the first 10 geometric patches

The next example, an octant of a cube, illustrates the flat surface patch modeling
method. Figure 7.9 gives the commands to construct this eighth of a cube. Command (1)
instructs the graphics package to create grid point 1 at (0.5,0.0,0.0). Command (2) makes
the translated grid point 2 at (0.5,0.5,0.0). Command (3) creates the translated grid points
3 and 4 at (0.5,0.0,0.5) and (0.5,0.5,0.5). Command (4) replicates the existing grid
points at locations displaced -0.5 units in the x direction. Figure 7.10 shows the location
of these eight grid points. Commands (5) through (7) connect these eight grid points with
three geometric patches. The order of the grid points for each patch construction assures

7-12

PATCH CHARACTERISTICS
MIN ASPECT MAX ASPECT MIN MESH MAX MESH MIN

PATCH AREA RATIO RATIO DISTORTION DISTORTION OBLIQUITY

10
11
12
13
14
15
16
17
18
19

0.26379e-01
0.94 195e-02
0.35520e-0 1
0.34069e-0 1
0.32313e-01
0.30247e-01
0.27864e-0 1
0.25 153e-01
0.22123e-01
0.18785e-01
. . .

0.28221em
0.18207e- 01
0.18995e+01
0.19188e+01
0.18619e+01
0.17632e+01
0.1627 le+01
0.14588e+01
0.12623e+01
0.1041 7e+0 1

0.49725e+00
0.24629e+00
0.1932 1 e+O 1
0.19336e+01
0.19 161e+01
0.18531e+01
0.17485e+01
0.16077e+01
0.14350e+Ol
0.12347e+01

0.73886em
0.146 14e+00
0.98336e+00
0.97883e+00
0.97362em
0.96733e+00
0.95956e+00
0.94974e+00
0.93683e+00
0.91 884e+00

0.12528e+01 -0.26909e-05
O.l8225e+01 -0.5537 le-05
0.10162e+01 -0.32068e-06
0.10207e+01 -0.44947e-06
0.10258e+01 -0.10674e-05
0.10320e+01 -0.10185e-05
0.10397e+01 -0.14235e-05
O.l0494e+01 -0.15064e-05
0.10622e+01 -0.21806e-05
0.1080 1 e+O 1 -0.20683e-05

Figure 7.7. Portion of an output file containing patch area information

that the direction of the patch normal is outward. The GFEG command (8) arranges a set
of 4 x 4 finite element nodes on each geometric patch object. The CFEG command (9)
connects these finite element nodes with quadrilaterally shaped finite elements. These
quadrilateral elements represent the flat surface patches for NEC. Figure 7.10 illustrates
the resulting octant of a cube.

This flat patch modeling method is easier than the previous arbitrary patch shape
method. This second method usually requires fewer geometric patches and utilizes GPKs
finite element generation capability to create multiple NEC patches. The cube object
requires only three geometric patches. The previous sphere example requires sixty patches.

This second modeling method does not require an area output file, but it produces
distinct entries in the application-independent neutral file. Figure 7.11 illustrates the neutral
file for the octant of a cube. The first section contains data groups for finite element nodes.
Each group contains a finite element node ID and spatial coordinates. The second section
contains data groups for finite element shapes. Each set of three lines contains a finite
element ID, a shape type ID in the Additional ID field, a property ID, and the corner nodes
associated with each element. The shape type ID is 3 for TRI element shapes or 4 for
QUAD element shapes. Each' of the twenty-seven patches in the cube octant example
produces a data set of three lines.

7-13

. . .
31 1 0 1 0 0 0 0 0
0.100000000e+Ol 0.000000000e+00 0.000000000em
31 2 0 1 0 0 0 0 0
0.4371 13918e-07-0.437113847e-07 0.100000000e41
31 3 0 1 0 0 0 0 0
0.9659258 13e+00 0.2588 19074e+00 0.000000000em
31 4 0 1 0 0 0 0 0
0.86349672 le+00 0.000000000e+00 0.504674614e+OO

31 5 0 1 0 0 0 0 0
0.834073782e+00 0.2234894 19e+00 0.5046746 14e+00
31 6 0 1 0 0 0 0 0
0.504741371e+00 0.000000000em 0.863457561e+OO
31 7 0 1 0 0 0 0 0
0.487542808e+00 0.130636707e+00 0.863457561e+00

31 8 0 1 0 0 0 0 0
0.96428597Oe+00 0.000000000em 0.2658 14126e+00
31 9 0 1 0 0 0 0 0
0.93 142873 le+W 0.249575600e+00 0.2658 14126e+00
31 10 0 1 0 0 0 0 0
0.707 133889e+00 0.000000000em 0.70707947Oe+00
. . .
32 1 0 3 0 0 0 0 0
0.100000000e+Ol 0.4371 13918e- 07-0.2841 14151e-06-0.165685451e+Ol 0.000000000em
-0.4371 13847e- 07-0.1021405 18e- 13-0.724234041e-07-0.874227765e- 07 0.100000000e41
0.165685439e+Ol 0.415248337e- 06 1 2

3 3 1 0 0 1 0 0 0 0 0 0
0.504741 37 le* 0.487542808e+00 0.298023224e- 07-0.342493653e- 01 0.265852332e+00
0.256793678e+00 0.104308 128e- 06-0.180394948e- 01 -0.2222297O4e+OO-0.2 14657486e+W
-0.93 1322574e- 06 0.150791 183e- 01-0.253959417e+00-0.245306015e+00-0.208616257e- 05
0.1723191 14e- 01-0.220622134e- 07 0.130636707e+00 0.132330075e+00 0.127821013e+00

-0.252795296e- 07 0.688076541e- 01 0.69699578Oe- 01 0.673245489e- 01 0.242946285e- 08
-0.575 173348e- 01-0.582627691e- 01-0.56277655 le- 01-0.9844343 1 le- 08-0.657295882e- 01
-0.665814504e- 01-0.6431271 13e- 01 0.863457561e+00 0.86345756le+OO 0.000000000em
0.000000000em 0.964275420em 0.964275420ea 0.000000000e+00 0.000000000e+00
0.130186439e+00 0.130186439e+00 0.000000000e+00 0.000000000em 0.698603391e- 01
0.698603391e-01 0.000000000e+000.000000000e+00 6 12 13 7
. . .

Figure 7.8. Portion of a neutral file containing arbitrarily shaped patch
information

I

7-14

...
(1) GR,1,,.5
(2) GR,2,TR,0/.5,1
(3) GR,3/4,TR,O/O/.5,1/2

(5) PA, 1 ,QUAD,,1/3/4/2
(6) PA,2,QUAD,,2/4/8/6
(7) PA3 ,QUAD,,3/7/8/4
(8) GFEG,lFT3,,4/4
(9) CFEG,IPT3,QUAD/4

(4) GR,5T8,TR,-.5,1T4

...

Figure 7.9. Commands to construct an octant of a unit cube

3

A X

1
€

7 8

6

2

Figure 7.10. Octant of a unit cube with corner grid points

The next example, a set of wires beginning at (O.O,O.O,O.O) and ending at
(0.5,0.5,0.5), illustrates the wire modeling feature. Figure 7.12 gives the commands to
construct this set of wires. Command (1) instructs the graphics package to create a straight
line from the origin to (0.5,0.5,0.5). Command (2) creates five nodes on the line such that
the distance between a pair of nodes is twice the distance between the previous pair. 8.0 is
the ratio of the distance between the last pair of nodes and the first pair of nodes.
Command (3) connects nodes on the line with finite element BAR shapes. Each of these
finite element BAR shapes may represent multiple wire segments, depending on the next
command. Command (4) assigns a property ID number to all BAR shapes on this
geometric line entity. The property list is 2.0/1.0/0.03/0.0/0.0/0.0. We give the meaning
of this list below. Figure 7.13 illustrates this set of wires.

7-15

1 1 0 2 0 0 0 0 0
0.500000000e+00 0 . m - 0.000000000em
1G 6 0 0000000
1 2 0 2 0 0 0 0 0
0.500000000em 0.166666672em 0.000000000em
1G 6 0 0000000
1 3 0 2 0 0 0 0 0
0.500000000e+00 0.333333343em 0.000000000e+00
1G 6 0 0000000
1 4 0 2 0 0 0 0 0
0.500000000e+00 0.5-m 0.000000000em
1G 6 0 0000000
1 5 0 2 0 0 0 0 0
0.500000000em 0.000000000em 0.166666672em
1G 6 0 0000000
1 6 0 2 0 0 0 0 0
0.500000000e+00 0.166666672em 0.166666672em
1G 6 0 0000000
1 7 0 2 0 0 0 0 0
0.500000000em 0.333333343em 0.166666672em
1G 6 0 0000000

2 1 4 2 0 0 0 0 0
4 0 0 0 0 . 0 0 0 0 0 0 0 0 0 e m 0 . 0 m 0 . 0 + 0 0
1 2 6 5

4 0 0 0 0 . 0 0 0 0 0 0 0 0 0 e + 0 0 0 . 0 e m O . - e m
2 3 7 6

2 2 4 2 0 0 0 0 0

. . .

Figure 7.1 1 . Portion of a neutral file containing finite element and node
information for the cube octant

. . .
(1) LI,#,,.5/.5 ./.5/0/0/0
(2) GFEG,lL,GJ/8.0
(3) CFEG,lL,BAR
(4) PFEG, 1L,BAR,2.0/1.0/0.03/0.0/0.0/0.0

. . .

Figure 7.12. Commands to create wire elements

7-16

Figure 7.13. Set of four wire segments modeled in GPK

The property list has meaning to the translator and the NEC input file. The first 2.0
is a header for all wire property lists. 1.0 gives the number of wires represented by each
finite element BAR shape. If this field were greater than 1.0, each of the four BAR shapes
would contain multiple wire segments. 0:03 is the uniform radius of all wires represented
by one BAR shape. If this field were 0.0, the field would signal to the translator and NEC
that the set has a tapered wire radius. The first 0.0 gives the ratio of the length of the next
wire to the length of the previous wire. The second 0.0 gives the radius of the first wire in
the set. The third 0.0 gives the radius of the last wire in the set. These last three fields
would contain nonzero entries if the set had a tapered wire radius.

At this point we will explain the parameters for a set of wires in a NEC input file
entry. A NEC wire entry requires the ratio, R, of the length of the next wire over the
length of the previous wire. The property list, which we describe above, gives this
number. If the total length of all wire segments is L and R equals 1.0, then equation 7.1
gives the length, $1, of the first wire segment. N is the number of wires in the set. If R is
not 1 .O, equation 7.2 gives the length of the first segment.

SI” L
(7.1)

- L (1-R)
(7.2) - L

s1=
1 - R N N-2 + RN-l 1 + R + . . . + R

7-17

Equation 7.3 gives the length, Si, of the other ifh segment in the set of wires.

i- 1 S i = S i R (7.3)

Finally, equation 7.4 gives the ratio, T, of the wire radii of the next wire segment over the
previous wire segment. R1 is the radius of the first wire and R2 is the radius of the last
wire.

This third modeling method does not require an area output file, but it produces
distinct entries in the application-independent neutral file. Figure 7.14 illustrates the neutral
file for the set of wire segments. The first section contains groups of three lines for nodes.
Each group of three contains a finite element node ID and spatial coordinates. The second
section contains data groups for finite element shapes. Each group contains a finite element
ID, a shape type ID in the Additional ID field, a property ID, and the endpoint nodes
associated with each BAR element. The shape type ID must equal 2 for BAR element
shapes. Each of the four finite element BAR shapes in the above example requires a data
set of three lines. The last section of the file contains a data group for element property
data. This group contains a property ID number and a list of the numbers associated with
that property ID.

5. Modifying Existing Structures

A designer may wish to change an existing scattering or radiating structure
to modify the calculated radiation patterns. Therefore, the structure editor must have the
ability to bring up an existing object for modification.

There are several ways to recall an existing object for modification. The
specification of an old structure exists as a PATRAN data base. The user may read this
data base during a design session. The neutral file alone contains all the information
specifying a structure. The user may choose to recall the structure by this method. During

7-18

. . .
1 1 1 0 2 0 0 0 0 0
0.000000000e+00 0.000000000e+00 0.000000000eM
1G 6 0 0000000
1 1 2 0 2 0 0 0 0 0
0.333333343em 0.333333343e+00 0.333333343em
1G 6 0 0000000
1 1 3 0 2 0 0 0 0 0
0.1000000 12e+01 0.1 OOOOOO12e+0 1 0.100000012e+01
1G 6 0 0000000
1 1 4 0 2 0 0 0 0 0
0.233333349e+01 0.233333349e+01 0.233333349e+01
1G 6 0 0000000
1 1 5 0 2 0 0 0 0 0
0.500000000e+01 0.500000000e+01 0.500000000e+01
1G 6 0 0000000
. . .
2 1

2
1 1

2
12

2
13

2
14

2 2

2 3

2 4

. . .

2
0
12

0
13

0
14

0
15

2

2

2

2
1
0

1
0

1
0

1

2

2

2

0

0 0 0 0 0
0 0.000000000em 0.000000000em 0.000000000em
0
0 0 0 0 0

0 0.000000000em 0.000000000e+00 0.000000000em
0
0 0 0 0 0

0 0.000000000em 0.000000000e+00 0.000000000e+00
0
0 0 0 0 0

0 0.000000000e+00 0.000000000em 0.000000000e+00
0

4 1 2 2 2 2 0 6 0
0.200000000e+01 0.100000000e+01 0.300000000e-01 0.000000000e+00 0.000000000e+00
0.000000000e+00
. . .

Figure 7.14. Portion of a neutral file with information on wire segments

a design session, PATRAN automatically creates a session file of all interactive commands.
Although this method is lengthy, the user can replay the particular session that created the
old structure.

The use of translators, discussed in the following paragraphs, allows another
alternative to recall an existing object. The geometry section of a NEC input file contains
all the information for the structure. The user can use the NEC to GPK translator on an

7-19

existing NEC input file and produce a application-independent neutral file. The user then
reads the neutral file of the structure.

Once PATRAN has the old structure, the user can'use the object creation, finite
element meshing, and property tagging commands to add to or modify a structure.

D. TRANSLATORS

Each software has its own input and output file format. For different codes to
exchange data, the user must format the data in a manner readable by the particular
program. We call the programs that perform this task translators. However, there may not
be a one to one correspondence between the data that one piece of software puts out and
the data another piece of software reads. For these cases, the translator program must
perform calculations on the raw data before formatting can occur.

We could not expect GPK to produce output files appropriate for the NEC analysis
code. Likewise, GPK has no ability to produce an image given a typical NEC input file.
Therefore, we produced a NEC to GPK translator and a GPK to NEC translator.

We invoke the translators by choosing the File Translation option in the Setup
Menu of the EIAW. Figure 7.15 shows this menu option for a typical translation session.
The particular session creates the geometry section of the NEC input file for the sphere
octant.

1. Patch Equations

In order to understand the work of the translators, we first present the
mathematical description of a curved surface patch within PATRAN. These equations are
especially important for the translation of structures created with the arbitrarily shaped patch
model described above.

PATRAN describes a curved surface patch by functions of two parametric
variables, 51 and 52. These variables range from 0.0 to 1 .O. The coordinates of any point

7-20

ORIGINAL PAGE SS
OF POOR QUALITY

Figure 7.15. Main window of the EIAW showing the Setup Menu and the
File Translation option

7-2 1

Knowledge of the values of x, y, and z and the partial derivatives of x, y7 and z,
with respect to the parametric variables, at the comers of the curved patch determines the
values of x, y, and z within the body of the patch [7-11. Let 2(51,52) represent any one of
x(51,52), y(51,52), or z(51,52). Equation 7.5 gives the coordinates of points within the
body of the patch.

Equations 7.6 and 7.7 give the partial derivatives of the coordinates with respect to
parametric variables.

Equations 7.8 through 7.12 give the expressions for the F functions in terms of a
parametric variable.

3 2
F 4 (0 = 5 - 5

(7.8)

(7.9)

(7.10)

(7.1 1)

(7.12)

Equation 7.13 gives the matrix of values of the coordinates and their partids at the comers
of the curved surface patch. Such a matrix exists for each of the three Cartesian
coordinates. These forty-eight numbers appear as the patch coefficients in the neutral file
shown in Figure 7.8.

7-22

(7.13)

2. GPK to NEC Translation

The entry in the NEC input file for a arbitrarily shaped surface patch
requires the following information: the surface area of the patch, the coordinates of the
center of the surface patch, and the elevation and azimuthal angle of the outward normal
vector at the center of the patch. We find the surface area of the patch from the output area
file (Figure 7.7). We read the forty-eight patch coefficients from the application-
independent neutral file (Figure 7.8) to construct the array in equation 7.13 for each
coordinate direction. We find the coordinates of the center using equation 7.5 with 61 and
52 set equal to 0.5. To find the elevation angle and azimuthal angle, we use equations 7.6
and 7.7 with 61 and 62 set equal to 0.5. Using equations 7.6 and 7.7, which give the
tangent vectors at the center of the patch, we first find the normal vector by taking a cross
product and then evaluate the orientation of this normal vector.

Returning to the sphere scatterer example, we can use the GPK to NEC translator to
create the geometry section of the NEC input file. Passing the files, portions of which we
illustrate in Figures 7.7 and 7.8, for the octant of the sphere scatterer to the translator, we
obtain the file illustrated in Figure 7.16. Each line of this portion of the geometry section
of the NEC input file contains a specification for an arbitrary shaped surface patch. The
nonzero columns correspond to the following information: the Cartesian coordinates of the
center of the patch, the elevation and azimuthal angle of the normal vector at the center, and
the area of the surface patch.

The entry in the NEC input file for a flat patch requires three comer nodes for a
rectangular or triangular patch or four comer nodes for a quadrilateral patch. For a neutral
file created using the flat patch model, the translation to a NEC input file is straight-
forward. The node numbers associated with a finite element TRI or QUAD shape identify
the nodes in the neutral file. We then convert the coordinates of’the identified nodes to the
coordinates of a flat patch for NEC.

7-23

SP 0 0 0.3859329 0.0508090 0.9214072 67.072242 7.4999895 0.0263790
SP 0 0 0.1345398 0.0177125 0.9908702 82.273910 7.4999633 0.0094195
SP 0 0 0.9891579 0.1302251 0.0684593 3.8678658 7.5000153 0.0355200
SP 0 0 0.9713060 0.1278749 0.2015152 11.563590 7.5000153 0.0340690
SP 0 0 0.9367341 0.1233234 0.3284283 19.165903 7.5000677 0.0323130
SP 0 0 0.8866230 0.1 167261 0.4480075 26.654396 7.4999895 0.0302470
SP 0 0 0.8221483 0.1082379 0.5590695 34.039726 7.4999108 0.0278640
SP 0 0 0.7444881 0.0980137 0.6604209 41.353576 7.4998846 0.0251530
SP 0 0 0.6548281 0.0862098 0.7508614 48.641994 7.4999108 0.0221230
SP 0 0 0.5543500 0.0729816 0.8291994 55.955921 7.4999108 0.0187850
. . .

Figure 7.16. Portion of an NEC input file for the sphere scatterer

Returning to the cube scatterer example, we can use the GPK to NEC translator to
create the geometry section of the NEC input file. Passing the file, portions of which we
illustrate in Figure 7.1 1, for the octant of the cube scatterer to the translator, we obtain the
file illustrated in Figure 7.17. Each pair of lines with headers SP and SC contains a
specification for a flat surface patch. The nonzero columns correspond to the following
information: a 1 specifying a rectangular patch and the Cartesian coordinates of three comer
nodes. A 2 in the second column of a SP card would specify a triangular patch followed
by the Cartesian coordinates of three comer nodes. A 3 in the second column of a SP card
would specify a quadrilateral patch followed by the Cartesian coordinates of four comer
nodes. The order of these nodes determines the orientation of a normal and of surface
currents.

The entry in the NEC input file for a set of wires requires the number of segments
in the set, the beginning and ending points, the wire radius or 0.0 for tapering, the ratio of
lengths of adjacent wires, the radius of the first wire, and the radius of the last wire. For a
neutral file created using the wire model, the translation to a NEC input file is straight-
forward. The node numbers associated with a BAR shape identify the nodes in the neutral
file. These nodes are the endpoints of wire segments. The property list assigned to the
BAR set determines the other wire parameters.

Returning to the wire example, we can use the GPK to NEC translator to create the
geometry section of the NEC input file. Passing the file, portions of which we illustrate in
Figure 7.14, for the BAR set to the translator, we obtain the file illustrated in Figure 7.18.
Each line with header GW contains a specification for a set of wires. The nonzero columns
in the GW card correspond to the following information: a 1 specifying the number of

7-24

SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
SP 0
sc 0
. . .

1 0.5000000 0.000e+00 0.000e+00 0.5000000 0.1666667 0.000ei-00
0 0.5000000 0.1666667 0.1666667
1 0.5000000 0.1666667 O.OOOe+OO 0.5000000 0.3333333 0.000e+00
0 0.5000000 0.3333333 0.1666667
1 0.5000000 0.3333333 O.OOOe+00 0.5000000 0.500oooO 0.000e+00
0 0.5000000 0.5000000 0.1666667
1 0.5000000 0.000e+00 0.1666667 0.5000000 0.1666667 0.1666667
0 0.5000000 0.1666667 0.3333333
1 0.5000000 0.1666667 0.1666667 0.5000000 0.3333333 0.1666667
0 0.500oooO 0.3333333 0.3333333
1 0.5000000 0.3333333 0.1666667 0.5oooOOO 0.5000000 0.1666667
0 0.500oooO 0.5000000 0.3333333
1 0.5000000 0.000e+00 0.3333333 0.5000000 0.1666667 0.3333333
0 0.5000000 0.1666667 0.5000000
1 0.5000000 0.1666667 0.3333333 0.5000000 0.3333333 0.3333333
0 0.500oooO 0.3333333 0.5000000
1 0.5000000 0.3333333 0.3333333 0.5000000 0.5000000 0.3333333
0 0.5000000 0.5000000 0.5000000

Figure 7.17. Portion of an NEC input file for the cube scatterer

GW 0
GW 0
GW 0
GW 0

1 0.000ei-00 O.OOOe+00 O.O00e+00 0.3333333 0.3333333 0.3333333 0.0300000
1 0.3333333 0.3333333 0.3333333 1.0000000 1.OOOOOOO 1.0000000 0.0300000
1 1.0000000 1.0000000 l.OooOo00 2.3333333 2.3333333 2.3333333 0.0300000
1 2.3333333 2.3333333 2.3333333 5.0000000 5.0000000 5.0000000 0.0300000

. . .

Figure 7.18. Portion of an NEC input file for a set of wire segments

segments and the six values for the Cartesian coordinates of the beginning and ending
points. 0.03 specifies the radius of each wire in the set. If this value were 0.0, the input
will would require a second card, the GC card. The third field of a GC card specifies the
ratio of lengths between adjacent wires. The fourth and fifth fields give the radius of the
first wire and the radius of the last wire in the set, respectively.

3. NEC to GPK Translation

For GPK to successfully image a structure given in a NEC input file using
the arbitrary surface patch model, GPK requires the coordinates of the comer points to
create grid entries in its neutral file and the forty-eight patch coefficients which specify the
curvature of the patch. However, the only information in the NEC input file is the patch

7-25

area and the orientation of the normal vector at the center. There is an infinite number of
possible geometric patches that we can construct from this information. Therefore, we
make the following assumption about the surface patch geometry. The patch is rectangular
with the area specified in the last column of the SP card in the NEC input file. The patch is
also tangent at its center to the true surface of the scattering or radiating object.

We mathematically describe the arbitrary patch constructed from the NEC input file
with the following equations. Equations 7.14 and 7.15 give the orthogonal unit vectors on
the surface of the rectangular patch. a is the elevation angle off the x-y plane. This value is
from the sixth numerical entry in the SP card. t) is the azimuthal angle off the x axis. This
value is from the seventh numerical entry. el , e2, and e3 are the unit vectors in the
direction of the coordinate axes.

(7.14)
(7.15) h A A

n2-= cos + cos (a + 90) + sin + cos (a + 90) e2 + sin (a + 90) e3

Equation 7.16 gives the coordinates of any point on the surface patch as a function of the
parametric variables 51 and 52 and the unit vectors given in equations 7.14 and 7.15. The
range of these parametric variables are 0.0 to 1 .O. Equations 7.17 through 7.19 give the
partials of the coordinates with respect to the parametric variables. In the last equation,
7.20, A is the area of the patch and 2w is the length of one side. The area is in the eighth
numerical entry in the SP card. The vector, c, is the coordinate of the center of the patch.
These coordinates are in the third through the fifth numerical entry in the SP card.

(7.16)
(7.17)

(7.18)

(7.19)

(7.20)

After calculating the appropriate parameters for the rectangular patch, the translator
constructs the neutral file. Using the NEC input file, portions of which we show in Figure
7.16, for the octant of a sphere, the translator produces the neutral file shown in Figure
7.19. The second section contains the forty-eight patch coefficients found using equations

7-26

3 1 1 0 1
4.706851 84Oe-01-1.994197071e-02 8.897709846e-01
3 1 2 0 1
4.494856298e-01 1.41084671Oe-01 8.897709846e-01
3 1 3 0 1
3.01 180601 le-01 1.215599701e-01 9.530434608e-01
3 1 4 0 1
3.223801 553e-01-3.946667 165e-02 9.530434608e-01

33 1 0 10
4.70685184Oe- 01 4.494856298e- 01-2.1 1995542Oe- 02-2.1 1995542Oe- 02 3.223801553e- 01
3.01 180601 le- 01-2.1 19955420e- 02-2.1 1995542Oe- 02-1.483050287e- 01-1.483050287e- 01
0.000000000e+00 0.000000000e+00-1.483050287e- 01-1.483050287e- 01 0.000000000em
0.000000000e+00-1.99419707le- 02 1.41084671Oe- 01 1.610266417e- 01 1.610266417e- 01
-3.946667165e- 02 1.215599701e- 01 1.610266417e- 01 1.610266417e- 01-1.952470094e- 02
-1.952470094e- 02 0.000000000e+00 0.000000000e+00- 1.952470094e- 02-1.952470094e- 02
0.000000000em 0.000000000e+00 8.897709846e- 01 8.897709846e- 01 0.000000000e+00
0.000000000em 9.530434608e- 01 9.530434608e- 01 0.000000000e+00 0.000000000e+00
6.32724762Oe- 02 6.32724762Oe- 02 0.000000000e+00 0.000000000e+00 6.32724762Oe- 02
6.327247620e- 02 0.000000000e+OO 0.000000000e+00 1 2 3 4
. . .

Figure 7.19. Portion of a neutral file produced by passing an NEC input
file through the NEC to GPK translator

7.16 through 7.20. We already discussed in Sections VII.C.2 and VII.C.4 the different
sections of the neutral file for an arbitrary patch shape.

The translation of a NEC input file containing flat patch information to a neutral file
requires little calculation. The translation process takes one SP and SC card pair and
creates one data group for a finite element TRI or QUAD shape and three or four data
groups for finite element nodes. Look to Section VII.C.2 for a discussion of the data
groups in an application-independent neutral file. Look to Section VII.D.2 for the
correspondence between a flat surface patch in NEC and a TRI or QUAD finite element
shape in PATFUN.

The translation of a NEC input file containing wire segment information to a
neutral file also requires little calculation. The translation process takes one GW and GC
card pair and creates one data group for a finite element BAR shape, two data groups for
finite element nodes, and one data group for a property specification. Look to Section
VII.C.2 for a discussion of the data groups in an application-independent neutral file.

7-27

Look to Section VII.D.2 for the correspondence between a set of wire segments in NEC
and a BAR finite element shape in PATRAN.

E. CARDEDlTOR

The structure editor, together with the GPK to NEC translator, can only create the
geometry section of a NEC input file. A complete NEC input requires other cards. Scaling,
frequency, and excitation cards are examples. In order to ease the addition of these cards
as well as the modification of existing input files, we create a menu and prompt driven
interactive file editor, called a card editor.

We want the card editor to run on several different machines with many different
applications. To this end, we locate the application-dependent information in a FIELDS
file. This file contains formatting information for the different input cards in a particular
application. We also locate the terminal-dependent information in an ESCAPES file. The
ESCAPES file contains the commands to manipulate the cursor for a particular terminal.
The following paragraphs discuss the FIELDS file created for NEC and the ESCAPES file
created for Tektronix VTlOO and Sun window terminals.

1. FIELDS File for NEC

We can best explain the format and contents of a FIELDS file using the file
for NEC as an example. We illustrate a portion of this file in Figure 7.20. The original file
contains groups of entries for all the possible NEC input cards. Figure 7.20 illustrates an
entry for a SP card and a SC card. The numbers in parenthesis on the left do not appear in
the original fie. They exist for the purposes of discussing each line entry.

The entry for the SP card begins on line (1) and contains the following information.
Line number (1) contains a text string which comments the entry. Line (1) comments that
the SP card is the eleventh card specified in this file. Line (2) is a text string identifying a
group of cards. The SP card belongs to the geometry group. Line (3) is the number of
possible values that could trigger the automatic insertion of another card after the SP card.
Lines (4) through (6) are a list of the possible triggers. These lines indicate that if the entry

'

in the third column of an SP card is 1,2, or 3, the editor will automatically add an SC card

7-28

(1 1) Card generates a surface patch
gmmevy
3
3 1 sc
3 2 sc
3 3 sc
Surface Patch (SP)
SP
9

(10) -1 2 7
(1 1) To input parameters of a single surface patch.
(12)
(13) 3 5 1
(14) A zero should occur in this field.
(15)
(16) 6 10 1
(17) Selectpatch shape: O=arbitrary patch shape l=rectangle patch shape 2;mangular
(18) patch 3=quadrilateral patch
(19) 11 20 5
(20) Patch shape 0: x coordinate of patch center. Patch shape 1-3: x coordinate of
(21) corner 1.
(22) 21 30 5
(23) Patch shape 0 y coordinate of patch center. Patch shape 1-3: y coordinate of
(24) comer 1.
(25) 31 40 5
(26) Patch shape 0: z coordinate of patch center. Patch shape 1-3: z coordinate of
(27) comer 1.
(28) 41 50 5
(29) Patch shape 0: elevation angle above the x-y plane of normal vector in degrees.
(30) Patch shape 1-3: x coordinate of comer 2.
(31) 51 60 5
(32) Patch shape 0 azimuth angle from the x axis of normal vector in degrees.
(33) Patch shape 1-3: y coordinate of comer 2.
(34) 61 70 5
(35) Patch shape 0: patch area in square of units used. Patch shape 1-3: z
(36) coordinate of corner 2.
(37) (12) Card generates a surface patch (continue):
(38) geometry
(39) -1
(40) Surface Patch (SC)
(41) sc
(42) 9
(43) 1 2 7
(44) If the third field in the SP card is 1 or 2 or 3, use this card for additional
(45) parameters.
(46) 3 5 1
(47) A zero should occur in this field.
(48)
(49) 6 10 1
(50) A zero should occur in this field.
(51)
(52) 11 20 5
(53) Patch shape 1-3: x coordinate of comer 3.
(54) Multiple patch: x coordinate of comer 3.
(55) 21 30 5
(56) Patch shape 1-3: y coordinate of comer 3.
(57) Multiple patch: y coordinate of corner 3.
(58) 31 40 5
(59) Patch shape 1-3: z coordinate of comer 3.
(60) Multiple patch: z coordinate of comer 3.
(61) 41 50 5
(62) Patch shape 3 only: x coordinate of comer 4.
(63)
(64) 51 60 5
(65) Patch shape 3 only: y coordinate of comer 4.
(ss)
(67) 61 70 5
(68) Patch shape 3 only: z coordinate of comer 4.

. . .

Figure 7.20. Portion of the FIELDS file for the Numerical Electromagnetics Code

7-29

after the SP card. Line (7) is the text string used for the menu entry. Line (8) is the first
two characters in the SP card. Line (9) is the number of numerical fields in the SP card.
We group the field information into sets of three lines. Lines (10) through (34) in steps of
3 each contain three numbers. The first number is the beginning column for the field. The
second number is the ending column for the field. There are eighty columns in a NEC card
entry. The third number indicates the type of information in the field. 1 indicates integer.
2 indicates normal floating point format. 3 indicates FORTRAN logical format. 4 indicates
character format. 5 indicates exponential real format. 6 indicates FORTRAN double
precision format. 7 indicates that the user cannot modify the field. Lines between (10) and
(37) which have text or blanks contain text displayed to the user during a interactive
session.

The entry for the SC card begins on line (37). Like the SP card entry, the SC card
entry has similar lines. Line (37) comments that the SC card is the twelfth card specified in
this file. Line (38) indicates that the SC card is part of the geometry card group. Line (39)

contains a negative number, which indicates that the appearance of an SC card depends on
previous cards in the input file. Line (40) shows the menu entry for the SC card. Line
(41) shows the two characters at the beginning of an SC card.

2. ESCAPES File for Tektronix VTlOO and Sun Window Terminals

We can best explain the format and contents of the terminal-dependent
ESCAPES file using the file for a Tektronix VTlOO and a Sun window terminal. We
illustrate a portion of this file in Figure 7.21. There are groups of entries for the possible
escape sequences on a VTlOO as well as user-defined character sequences. An escape
sequence is a set of keyboard punches containing an escape character. Moving the cursor
on the terminal, inserting and deleting text lines, and blanking portions of the text on the
screen are examples of the effects of these escape sequences. Toggling the menu of card
options on or off, exiting the file, and replacing the normal escape sequences with a shorter
set are examples of the effects of user-defined escape sequences. The numbers in
parentheses on the left do not appear in the original file. They exist for the purposes of
discussing each line entry.

7-30

(1) 45
(2) 0)Insert.n.spaces.from.cursor:
(3) "[#@
(4) 1
(5) 1)Cursor.up:
(6) "[#A
(7) 1
(8) 2)Cursor.down:
(9) W B
(10) 1
(1 1) 3)Cursor.forward:
(12) ̂ [#C
(13) 1
(14) 4)Cursor.backward:
(15) "[#D
(16) 1
(17) 5)Cursor.nth.line.down:
(1 8) "[#E
(19) 1
(20) 6)Cursor.location:
(21) "[##H
(22) 1;l
(23) 7)Erase.from.cursor.to.bottom:
(24) "[J
(25) 8)Erase.from.cursor.to.end.of.line:
(26) "[K
(27) 9)Insert.n.lines.from.current.line:
(28) "[#L
(29) 1
(30) 10)Delete.n.lines.from.current.line:
(31) "[#M
(32) 1
(33) 1 1)Delete.n.characters.from.cursor:
(34) "[#P
(35) 1
(36) 1 2)Select .reverse. image. rendition:
(37) "[h
(38) 0

(40) "r

. . .
(39) 37)Within.the.current.field.move.one.character.to.the.nght:

(41) 38)Within.the.current.field.move.one.character.to.the.le~:
(42) "1
(43) 39)Quit.from.card.editor.without.saving:
(44) P
(45) 4O)Exit.from.card.editor.saving.changes:
(46)
(47) 41)Save.changes.in.the.current.file.without.exiting:
(48) "s
(49) 42)Add.a.new.card.above.the.current.cursor.position:
(50) "n
(51) 43)Delete.a.card.at.current.cursor.position:
(52)
(53) 44)Toggle.menu.of.card.items:
(54) "rn

Figure 7.21. Portion of the ESCAPES file for Tektronix VTlOO and Sun terminals

7-3 1

The entries in the ESCAPES file contain the following information. Line (1) is the
number of terminal- and user-defined sequences. If a user adds more sequences to the list,
he must modify the card editor code so that the editor understands the effect of the new
sequences. Groups of two or three entries follow line (1). The first line in any group is a
comment line describing the function of the character sequence. Lines (2), (5) , and (8) are
examples of comment lines. The escape or user-defined sequence follows the comment
line. A A[indicates an escape character. However, a A is a normal carat character and
usually signals a user-defined character sequence. A # character indicates an arbitrary
number entry. A % character indicates an arbitrary character string. If either the # or %

character appears in the sequence, the third line in the set indicates the default numeric or
text values for these arbitrary entities.

3. Window Interface to the Card Editor

Although the user-defined sequences are short, we prefer to use the menu
mechanism to run the card editor. A user normally invokes the card editor by choosing the
Card Editor option in the Setup Menu of the EIAW. When the card editor program begins,
a new window, which contains two smaller subwindows, appears. Look to Section VI1.B
for a discussion of the window environment on the Sun 3/160 workstation. The top
subwindow contains the text of the NEC input file, the menu of card options, and prompts
for the contents of each field in a given card. This subwindow is a normal Sun window
terminal. The bottom subwindow controls the activity in the top subwindow. This
subwindow sends the appropriate character sequences to the top subwindow after a menu
selection. Figure 7.22 shows the card editor window of the EIAW.

The card editor has other features. It always highlights the current field in the file.
The editor continually updates the display on the bottom of the screen with text explaining
the significance of the current field.

Many of the menu options are self explanatory. The FILE menu contains entries to
toggle the menu, delete a card entry, or gracefully leave an editing session. The HORI.
MOVEMENT and VERT. MOVEMENT control the motion of the cursor from one field to
the next. The HORI. MOVEMENT COUNT and VERT. MOVEMENT COUNT control
the number of multiple horizontal and vertical cursor movements. The maximum count is
thirty. FIELD MOVEMENT and FIELD MOVEMENT COUNT control the cursor

7-32

ORIGINAL PAGE IS
OF POOR QUALITY

a
8
8
8
8
8

8
8
8
8
8
8
8
8

8
8
8

a

e

e
e
8
8
8
8

a
1

0 a.5957587 8.457izm m.wm 4 1 . ~ ~ 3 5 7 2 37.499877 8.az5isso
a 8.4571263 8.5957986 ~.=MZIB 41.~53561 52.499874 m.oz5i5sa

8 a.osm01.w 8 . 7 4 4 4 ~ L ~ E U Z O ~ 4 i . s s s 7 2 8 2 . 4 m 6 2 m.miissa
8 m . 6 i e z m 0 . ~ ~ 2 7 5 4 2 8 . 7 ~ ~ 6 1 4 4 0 . ~ 1 9 9 8 22.499878 0.m221230

8 8.2876616 8.6537523 8.66UZW 41.353588 67.499885 8.8251538

8 8.5239929 8.4028739 8.7518614 48.641983 37.499851 8.8221238
8 8.4828739 8.5239929 8.7588614 48.642889 52.499858 8.8221230
8 8.2527542 8.6182827 8.7588614 48.642821 67.499816 8.8221238

0 8.5165719 8.2139711 8.8291994 55.955917 22.499887 8.8187850

8 8.3483789 8.44359U 8.8291994 55.955928 52.499897 8.8187858
8 8.2139711 8.5165719 8.8291994 55.955928 67.499893 8.8187858
8 8.8729815 8.554SSU 8.8291994 55.955925 82.499969 8.8187858

8 8.4996667

1 8 8 W8.8
1 1 8 w.8 278.8 160.8

8 8.m62097 m . 6 s m e i 8 . 7 ~ 1 8 6 ~ 4 8 . 6 4 2 m 82.499816 a.az212sm

a 1.4435984 a.34m3789 a.azgi994 55.955925 ~7.499912 m.ei8785a

111

FILE: [h l m t m Card] [Quit F i l m] [Savm F i le] [Enlt Film]

HORI. MOVEMENT CWWT: 3

VERT. MOVMENT: [up] [Mult. Up] [Mult. Own]
VERT. MOVMENT COUNT: 1%

FIELD MOVEMENT c m : a
INSERT CHAR. FIELD:
MSSIGE:

HORI. MOVEMEW: marn [Right] [&It. Loft] [MI*. Riphtl

FIELD MOVMEWT: [Rl&t] [kit. Lef t] [&It. Rlghtl

Figure 7.22. The card editor window in the EIAW

7-33

movement within a particular field. The user can type in the region after INSERT CHAR.
FIELD. The typed characters automatically appear at the current cursor position on the top
subwindow.

If the user chooses to toggle the menu, the top subwindow superimposes the menu
of card options on top of the current file. The bottom subwindow changes the menus.
Figure 7.23 illustrates the appearance of the card menu. The user prompt on the bottom of
the terminal subwindow explains the use of the currently selected card. Figure 7.23
illustrates the explanation of the excitation card. The VERT. MOVEMENT and VERT.
MOVEMENT COUNT pertain to vertical movement in the card menu.

F. RUNCONTROL

With the input file prepared for NEC, we can run the NEC code on the hypercube.
A normal hypercube session requires the user to remotely log into the control processor
(CP). On the CP the user enters a queue to await his turn to submit an interactive program.
However, instead of remotely logging into another machine, the user of the EIAW would
prefer to remain in the EIAW environment. Fortunately, the user can also choose to
submit a batch job on the hypercube that would execute at some future time. We will use
this batch mechanism to submit hypercube jobs for immediate execution. The only
restriction on batch submission is execution delays until the interactive queue is empty.
The run control program is the piece of code that causes NEC to execute on the CP and
hypercube.

For the run control program to function, it needs information on the location of
executable files. It requires an input file. Figure 7.24 illustrates an example input file.
Each pair of entries begins with a comment line. The second line of the pair contains the
appropriate parameter. This file specifies the control processor machine, the host Sun
computer, the parallel and sequential NEC codes, and the location of these codes in the
directory hierarchies.

After performing the necessary setup steps, the user can return to the Main Menu
and choose the next analysis option, Run Menu. The Run Menu allows the user to remain
in the EIAW environment while the NEC code executes on the CP and on the Mark 111
hypercube.

7-34

ORIGINAL PAGE IS
OF POOR QUALITY

0 0 0.3422255 a.826201i i.4480073 Ze.sssi Wire * rc s p c i t i m)
0 0 0.1167261 0.8866229 0.4480075 26.654Sl End Gem Input (E)
0 0 0.7661203 0.5173974 0.5590695 34.03971 Read NOF F i l e (W)
0 0 0.6578824 0.3.41109 0.5590681 34.03971 Coord 1 r m ~ f o d l) O
0 0 0.504818S 0.6578823 0.5590694 34.03971 Goner Cyllndrlc(GR)
0 0 0.3173374 0.7551202 0.5590694 34.03971 Scale Dlmeneion(GS)
0 0 O.iWZS78 0.8221483 0.5590694 34.03971 Wire SpwAficat(OW)
0 a 0.6937524 0.2879617 0.6604209 41.35SSl Wire Specificat(GC)
0 0 0.5957387 0.4571263 0.6604208 41.35351 Reflect ion (CX)
a
0
0
0
0
0
0
0
0
0

0
l

0 a.4571263 0.5957385 0.66042M 41.35SSi Surface Patch (SP)
0 0.2675516 0.6937323 0.6604200 4l.SSSSl Surface Patch (SC)
0 0.0980137 0.7444880 0.66M2M 41.55351 Mult Patch Surf(S4)
0 0.51021126 1.2527542 0.7508614 48.64191 M a ~ i m Cwol lna (CP)
0 0.5239929 0.lL207ss 1.7588614 48.641si EK Thin wire i i e (~ ~)
(I 0.4020739 0.5239929 0.7508614 48.64201 End of Run (EN)
0 0.2527542 0.6102127 0.7508614 48.64201
0 0.0862097 0.6548281 0.7508614 48.64201 reqwncy (FR
0 0.5165719 0.2139711 0.8291994 55.95591 Md Crwnd Para(GD)
0 0.4435oU 0.3403789 0.8291994 SS.955Sl C r d Parwot (CY)
I 11.3403789 0.U359U 0.8291994 SS.eSSSl I n t v ~ o K I - ~ (K I I)
0 0.2159711 0.5165719 0.8291994 55.95591 Loading (LO)
0 1.0729815 0.5543500 0.8291994 55.9559l tioar E l e c t r i c F(NE)

I Near MagMtic C(NH)
0 0 0.4996667 I Next Structure (NW)

I P r i n t Charge De(PQ)
0 1 a 0 soo.0 I P r i n t Current (PT)
i l i a 90.0 270.0 1801 Radiation Patte(RP)

I Wit- NCF F i l e (WC)
I EKWUt. (XQ)
I End O f Menu....

b p o c i f l e e th. enc i ta t ion tor t tw atructure. Eatcitation can ba voltage eourcee o
........ end o f f i l e

Figure 7.23. The card editor window showing the appearance of the card menu

7-35

The directory on the Counterpoint containing sequential NEC:
lylemljseq
The directory on the Counterpoint containing parallel NEC:
/urmp/emj par
The name of the NEC sequential code:
neccp.out
The name of the NEC parallel code:
neccp.out
The name of the NEC element code:
neceltp.out
Maximum number of minutes for a batch job on the hypercube:
45
The name of the Counterpoint machine:

The name of the Sun machine:
sun9

cPc5

Figure 7.24. Example input file for the run control program

Figure 7.25 illustrates the Run Menu and a typical interactive session with the run
control program. During the session the user specifies the NEC input file, sph3.inp; the
NEX output file, sph3.out; the file containing the current vector, sph3.cur; the mode of the
run, parallel or sequential; and, if parallel mode, the dimension of the hypercube. The run
program tells the user that it successfully copied the input file and command file to the CP
of the hypercube. The parallel execution of NEC is the current status of the run. When
NEC terminates, the run control program will move the solution vector file to the EIAW
environment and delete all scratch files from the CP.

G . RESULTS ANALYSIS

With the solution vector, the user can obtain the near electric and magnetic fields,
the E 8 and E @ field, and the total gain. A results generation program takes the solution

vector and constructs the appropriate files for GPK to image these fields. The results
program will create a neutral file containing the grid on which GPK superimposes the field
values at the node points. It also creates a results file which contains the columns of field
values. We describe the results generation program in more detail in Section VlII.

7-36

ORIGINAL PAGE IS
OF POOR QUALITY

ile(do not indicate a path): sph3.inp

EC output file(do not Indicate a path): eph3.out

EC molution flle(do not Indtcate a path): a p h 3 . c ~

xecute mequentlal NEC(enter I) or parallel NEC(enter 1): 1

parallel run, nu. tlu direneion of the Hypercube: 5
plated Copy Of Input File To Counterpoint.
pletmd Copy Of C m a n d Script File To Counterpoint.
rt Of Analysis Code On Th. nyporcub..
: /ut.p/aJpar/nrccp.art</utrp/rjpar/inout.nrc>/u~p/-jpar/trp.999 : etarted at Fri Apr 22 16:26:04 1988

Figure 7.25. The Run Menu and a typical interactive session with the run control program

7-37

After recovering the solution vector, the user can return to the Main Menu and
choose the next analysis option, Output Menu. The Output Menu allows the user to create
files containing field data and display the fields graphically. Figure 7.26 illustrates the
Output Menu and a portion of a typical run with the results generator.

7-38

ORIGINAL PAGE IS
OF POOR QUALITY

MENU PATH:
ACTIVE DIRECTORY:

Yec MendDutput Mon~dCremte P lo t0

>>Do you umntmd pr in ted output? (y/n)
(Pr lnted output . l a a m program emcution)

>> ENTER PRINTED OUTPUT FILEWME
Y W R I C A L ELECTRMACYETICS CODE

Perfect ly conducting 0phore rmdius=.498 m. Wmvelmngth = .9993

- - - - - FREQUENCY - - - - - -
FREQUENCY= 3 . e e e e ~ e z MHZ
WAVELENCTHx 6.9933.-81 Ml3ERS

PLANE WAVE THETAx 9a.ee DEC, pnIx z?e.ee DEC, ETA= ine.ee DEC, TYPE -LINEAR= AXIAL RATIDZ n.eae
Remdlng 1 o f 1 oolut lon vectorm
CUR road f ra
s hS.cur P> Contour p l o t of surtmcm current.? (y/n) 0

Figure 7.26. The Output Menu and a portion of a typical run with the output generator

7-39

REFERENCES

17- 11 SunView Programmer's Guide, Sun Microsystems Inc., Mountain View, CA,
October 1986.

[7-21 PATRAN Plus User Manual, Vols. 1 and 2, PDA Engineering, Costa Mesa, CA,
July 1987.

[7-31 G. J. Burke and A. J. Poggio, Numerical Electromametics Code (NEC) - Method
of Moments, Lawrence Livermore National Laboratory, Livermore, CA, 1981.

7-40

SECTION VIII

ANALYSIS OF THE NEC RESULTS USING THE ELECTROMAGNETIC
INTERACTIVE ANALYSIS WORKSTATION

A. INTRODUCTION

The NEC code, described in Section IVY produces only a printed output file
containing information about the currents induced in the object and about the near and far
field radiation patterns. A new interactive code, NECPAT, has been developed, running
on the Sun workstation computer, which displays results graphically using the solutions
computed by the hypercube NEC code. Two distinct types of graphical display are
possible. Using NECPAT, simple 1-d line plots of the variation of a specified quantity
with one coordinate can be drawn interactively on the workstation screen. NECPAT can
also create files containing information for 2-d color contour plots of the variation of a
quantity with two coordinates. The graphics package (GPK) uses these files to create color
contour plots where color is used to represent the value of the quantity on a 2-d grid. Some
knowledge of PATRAN is needed to view the color contour plots. The more experienced
PATRAN user will be able to use PATRANs flexibility and sophistication to make on-
screen comparisons of various results from the same or different NEC runs using the files
created by NECPAT.

NECPAT's structure is flexible and modular so that additional output options can
easily be incorporated and so that NEC and NECPAT can be merged together in the future
when it becomes possible to use the Sun computer as a host for the hypercube. In this

section, the NECPAT code is described and the available analysis options presented.

B . DESCRIPTION OF THE EIAW CODE NECPAT

The function of the NECPAT code is to provide interactive analysis of NEC results
which were previously computed in the hypercube by the NEC code. NECPAT is a
sequential code which runs on the EIAW computer. This code, along with the GPK,
allows the user to calculate, print, and plot most of the near and far field radiation pattern
information which is available as printed output from the original NEC code [8-11. The

8- 1

NECPAT code is launched from the EIAW when the user moves to the Output Menu from
the Main Menu (Figure 7.3) and from there chooses the Create Plots option.

NECPAT does not solve electromagnetic problems but uses as input solution files
computed by the hypercube NEC code. The NEC code itself, described in Section IV and
Ref. [8-11, solves a matrix equation to determine the currents induced in a metallic object
when the object is excited either by an applied voltage or an incident electromagnetic wave.
Specifically, the induced current is expanded in known basis functions, and NEC solves
the matrix equation A F = E to determine the amplitudes, F, of these basis functions; here E
is the (specified) excitation vector and A is the interaction matrix of order N + 2M where N
is the number of wires and M is the number of patches used to model the object. It is this
solution vector F which is utilized by NECPAT to provide interactive analysis of the NEC
results. The parallel NEC code has been modified so that it now creates a file for NECPAT
which contains vector(s) F. This solution file contains all the geometry and excitation cards
from the NEC input file used for the run.

When the parallel NEC code is launched from the EIAW, the solution file is
automatically passed back across the Ethernet network to the Workstation for use as input
to NECPAT. NECPAT calculates the induced currents from the solution vector F and
geometry information in the solution file. Using the induced currents, NECPAT
interactively calculates the user-requested output.

Figure 8.1 shows a simplified block diagram of the structure of NECPAT in
comparison with the structure of the hypercube NEC code. The input portions of the two
codes, the portion where the geometry and excitation cards are read and interpreted, are
identical. After completing the input portion of the code, the two codes differ. NECPAT
reads the solution vector F from the solution file at the point where the hypercube NEC
code starts up the element code to fill and solve the matrix equation for F. Following this,
the NECPAT calculation of the induced currents from the basis function solution vector is
identical to that in the NEC code. NECPAT then queries the user as to what output to
create.

An alternative approach to the analysis of NEC results is to specify the desired
output before the parallel NEC code is launched and compute this output in the hypercube.
This would entail storing the requested current and radiation pattern information in a file.

8-2

Workstation

input

0

elements

NECPAT

solve
F = A'E

~

read F
from file

calculate
I from F,
radiation
patterns

Hypercube

CP
pass input

pass F

b
0

elements

Parallel NEC

write F
to file

Figure 8.1. Block diagram of the structure of NECPAT in comparison
with the structure of the hypercube NEC code

This file would then be passed to the EIAW, where the information would be read and
plotted. This approach was not selected for two reasons: 1) The file containing the
radiation pattern information would be typically large (1 kilobyte to 1 megabyte per
solution), making long-term file storage a problem. 2) Since the output would be specified
before the run was made, the user would not have the flexibility of requesting further
output, e.g., the same plot with finer resolution, based on the plot he has just seen.

Thus the main advantages of our approach to the analysis of NEC results are that 1)
only relatively small solutions files need to be saved, and 2) the user can request additional

8-3

output plots at any time. If, on the basis of viewing one plot, the user decides that more
resolution or further information is needed, another plot can easily be generated. For
comparison, a plot from a previous run also can be generated.

The one disadvantage of our approach is that the user must wait while the
Workstation computer calculates the necessary field information from the induced currents.

C . NECPAT OUTPUT OPTIONS

NECPAT interactively gives the user information about the currents induced in the
object and the scattered electromagnetic near and far fields. Three types of output can be
created: 1) simple 1-d line plots on the EIAW screen which can also be saved in a graphics
file for printing on a laser printer; 2) files for color contour plots which are viewed using
the GPK; and 3) a printed output file containing the currents and all of the radiation pattern
information requested for plotting. If the user wants to plot 1-d graphs directly to the
Workstation screen, NECPAT is started up in the EIAW environment by choosing Create
Plots from the Output Menu.

1. Far Field Information

In the far field approximation, the scattered electromagnetic field
information depends on distance from the object only via a factor, (l/R)exp(ik.R), where
R is the vector from the center of the object to a point in the far field and k is the wave
vector. NECPAT factors out this radial dependence so that the far field information
depends only on two spherical coordinates, 0 and @. The relationship of this spherical
coordinate system to the rectangular coordinate system used in NEC, NECPAT, and
PATRAN is shown in Figure 8.2.

a. Color Contour Plots. NECPAT has options for calculating and
creating files for 0-0 color contour plots of any of the far field quantities calculated by the
original NEC code. These far field quantities include total and component gains (or radar
cross sections for scattering problems) and the magnitude and phase of both the 0 and Cp
components of the electric fields (with the radial dependence factored out). NECPAT

8-4

tZ

X

Figure 8.2. Definition of the spherical coordinate system used in NEC,
NECPAT, and PATRAN

queries the user as to which region in 8 and Q is to be plotted and the number of 8 and Q
increments to be used. NECPAT then computes all the far field information for the
specified range of points in 8 and Q and writes the information to a file.

Using the GPK, the color contour plots are actually drawn on the surface of a fully
three-dimensional sphere (or portion thereof) of unit radius. Thus, if the user specifies the
entire sphere (8 = 0 - 180 degrees, Q = 0 - 360 degrees), the GPK contour plots far field
quantities directly onto the surface of the unit sphere. Using GPK commands, the user can
interactively rotate this sphere to view any region in 0 and Q. A color bar on the right of the
Workstation screen gives the numerical values for the various contour levels.

In order to make these contour plots, NECPAT creates three distinct files for GPK.
One file, a application-independent neutral file (see Section VIII.B.2 and Figure 7.8),
contains the information needed by GPK for creating a 3-d partial or full unit sphere with
nodes at the specified points in 8 and Q. Another file, a node results file, contains the
various far field quantities for the requested points (nodes) in 8 and Q. A node results file,

8-5

like a neutral file, is a strictly formatted text file with one record (line) per node containing
the node ID in the first column and up to 200 columns of results for this node.

The far field results file created by NECPAT contains nine columns of information
for each node (e-$) point. These columns contain the same information (in the same

order) which appears in the original NEC printed output of the radiation pattern, but
without the three polarization columns. Thus, the first two columns are 8 and $ for this
node; the next three are the three gains or scattering cross sections (vertical, horizontal and
total, or major, minor and total, as requested); and the last four are the magnitude and phase
of the 8 and $ components of E, respectively (see [8-11). Upon request, GPK will create a
color contour plot of any of these columns.

A third PATRAN file is also created by NECPAT: a PATRAN session file. A
session file is a text file containing commands which a user would normally give to a
terminal. The graphics package creates such a session file automatically each time it runs.
All commands entered by the user via the terminal are saved in this file. PATRAN offers
the user the option of input via session files so that long, tedious user sessions, or portions
thereof, can be automatically repeated by the user without reentering the commands from
the terminal input. These files are discussed in detail in the graphics software manual
[8-21. The session files created by NECPAT contain the PATRAN commands for creating
the color contour plot of the total gain (or radar cross section for scattering problems) for
the specified portion of the unit sphere. Once the graphic software has finished executing
the commands in the session file, the user can then interactively display contour plots of
any far field quantities contained in the results file. Moreover, by using PATRAN's split
screen capability, comparisons of different far field quantities, or the same quantity from
different solutions, can also be made.

b. 1-d Line Plots. NECPAT can create directly on the EIAW screen
simple 1-d line plots of the same far field information discussed in the contour plot section,
e.g., the three gains (or scattering cross sections for scattering problems) and the
magnitudes and phases of both the 8 and Q, components of the far electric field. A sample
ld plot of the magnitude of the 8 component of the far electric field for $ = 180 - 360
degrees at 8 = 90 degrees is shown in Figure 8.3. The case plotted is the test case
presented in Section V. Figure 8.3 corresponds to a slice through the contour plot shown
in Figure 5.14 at 8 = 90 degrees. For NECPAT to create a I-d line plot, the user must

8-6

0.21874~4-00

0.18000etO3
eth(mag) versus _phi

90.00 - degre at - tkt* -

0.36000et03

Figure 8.3. Sample 1-d far field plot for the test case of Section V

specify 1) the coordinate to vary, 2) the range of variation, 3) the value of the increment in

the coordinate to vary and 4) the fixed value of the other coordinate. Any of the far field
quantities can then be plotted with this choice of x-axis. If the user requested that the I-d
line plots be saved in a file, these plots can also be sent to a laser printer (or viewed again)
after NECPAT is terminated. This involves the use of several other programs to translate
the graphics file.

c. Printed Output. If the user has requested that a printed output file
be created by NECPAT, all the far field information for the values of 8 and @ requested for
either 1-d or contour plots will also be written to the output file. .

8-7

2. Near Field Information

To describe the far field, only two components of the electric field and two
coordinates (E0, E$, 0, $) are needed because the radial dependence could be factored out;
all of the far field information could be contained in two unit-sphere contour plots, one of
E0 for all 0 and $ and one of E@ for all 0 and $. A complete description of the near field
pattern requires knowledge of all three components of both the electric and magnetic field at
every point (Ex, Ey, Ez, Hx, Hy, Hz, x, y, x). A description of the near field on just one
plane (e.g., the x-y plane at a fixed z) requires six contour plots for the electric and
magnetic fields. Because there is so much more information needed to describe the near
field, the near field portion of NECPAT is somewhat more complicated than the far field.
Moreover, the original NEC code allows the user to obtain near field information in either
spherical or rectangular coordinates. NECPAT is limited to rectangular coordinates for
near field output.

a. Color Contour Plots. NECPAT has options for creating files for
rectangular contour plots of any component (magnitude and phase) of either the electric or
magnetic field for any regions of any x-y, y-z, or z-x plane.

To generate near field contour plots, NECPAT first queries the user as to which
spatial region is to be plotted and with what resolution, Le., which plane (which fixed
coordinate) and what range of the other two coordinates and with what increments. The
user next must specify whether the electric or magnetic field is to be plotted (the component
or phase to be plotted is not specified at this time). NECPAT then calculates all three
components (magnitude and phase) of this field for the specified range of points (nodes)
and puts this information in a compatible node results file. The near field results files
contain six columns of results for each node, e.g., EX(magnitude), EX(phase),
EY(magnitude), EY(phase), EZ(magnitude), EZ(phase), respectively, for the electric field
file. NECPAT also creates a PATRAN session file for creating the grid points and the
plots. NECPAT then asks the user as to whether the other field (E or H) should be
calculated for this same range of points.

To view a near field contour plot, the user runs the graphics software using the
NECPAT-generated session file; this file contains commands to create the grid and read in
the file containing the calculated near fields. GPK can then contour plot any component or

8-8

phase specified by the user. (The near field results files contain six columns of results,
e.g., EX(magnitude), EX(phase), EY(magnitude), EY(phase), EZ(magnitude), EZ(phase)
for the electric field file.) Using PATRANs split screen capability, different components
or phases can be plotted in different windows. Because of PATRAN's flexibility, the user
can also use the split screen to compare electric and magnetic fields or electric fields from
two different runs. Moreover, the graphics software also allows vector results such as
these near electric field results to be displayed as colored vectors in its three-dimensional
space; the direction of the plotted vector is the direction of the near electric field and the
color gives the magnitude.

b. 1-d Line Plots. NECPAT can create directly on the Workstation
screen simple 1-d plots of the magnitude and phase of any rectangular component of the
near electric and magnetic fields for any range of x, y or z (at any fixed values of the other
two coordinates). For example, Figure 8.4 shows a line plot of the magnitude of the z
component of the electric field as a function of x at y = -0.6163 and z = -0.3 for the test
case in Section V. This corresponds to a slice through the contour plot of Figure 5.2 at z =

-0.3. As for the far field, these plots can also be saved in a file and printed or viewed later.

The user must specify to NECPAT the coordinate to vary, the range of the
coordinate to be plotted, the increment, and the fixed value of the other two coordinates.
The user also specifies which field (E or H) is to be plotted. NECPAT then calculates the
magnitude and phase of all three components of the specified field; the user can then
request a plot of any of these. The user can then also ask NECPAT to calculate and plot the

other field for this same range of points.

c. Printed Outmt. If the user has requested that a printed output file be
created by NECPAT, the near field information for the fields (E and/or H) for the values of
x, y, and z requested for either 1-d or contour plots will also be written to the output file.

8-9

0.42709etOO

0.30877etOO

0.61625etOO
n,(mg) versus X
= -0.6163et00, z = 3.300

0.61622etOO

Figure 8.4. Sample 1-d near field plot for the test case of Section V

3. Induced Currents

a. Color Contour Plots. For objects modeled with quadrilateral
patches only, NECPAT has an option for creating a file for a color contour plot of the
magnitude of the induced currents. The GPK is used to make color contour plots of the
currents displayed on the three-dimensional object itself. Within GPK, the object can be
rotated, or viewed from several angles using a split screen, to see the induced currents on
various portions of the object's surface.

Specifically, upon request, NECPAT creates a PATRAN-formatted element results
file containing the magnitudes of the induced current in each patch of the object. The
magnitude of the currents are presently in column 1. The user must also have an
application-independent neutral file for the object's geometry (see Section VII.B) which

8-10

contains finite element information for each patch. To create the contour plot of the induced
currents, the user runs the graphics software and 1) uses the interface mode option to read
in the object's neutral file; 2) uses the results mode option to read in the element results (the
magnitude of the currents); and 3) uses the contour plotting option to view the results. If
the object's neutral file does not exist, it can be created from the geometry information
contained in the solution file using the translator (Section VILA). At present, this option is
implemented for objects modeled with quadrilateral patches only.

b. Printed Outuut. Upon request, the currents in both wires and patches are
put in the printed output file in the same format as in the original sequential NEC.

D. FUTUREPLANS

Several additional options for the analysis of NEC results are planned for the next
year. Three additional options are planned for NECPAT: 1) Options for creating near field
1-d and 2-d plots in spherical coordinates will be added. 2) The capability of making
contour plots of the induced currents on the surface of objects modeled with arbitrary and
triangular patches will be added. At present this option is implemented only for objects
modeled with rectangular or quadrilateral patches. 3) An option to plot the monostatic radar
cross section as a function of wave number will be added. Since each wave number
corresponds to a separate NEC solution, this will involve combining information from
several NEC solution files.

Soon it will be possible to use the Sun workstation computer as the control
processor for the hypercube. In this situation, the hypercube NEC code and the
workstation NECPAT code will be merged so that the code structure will be as in the earlier
hypercube NEC code (with the Sun running the CP portion). The output portion of the
hypercube NEC code would then be replaced with the interactive output code from
NECPAT and the requested radiation pattern information would be calculated in parallel in
the elements. The user would have options for either computing the solution or reading it
from a file.

8-1 1

REFERENCES

[8-11 G. J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC) - Method
of Moments, Lawrence Livermore National Laboratory, Livermore, CA, 198 1.

[8-21 PATRAN Plus User Manual, Vols. 1 and 2, PDA Engineering, Costa Mesa, CA,
July 1987.

8-12

SECTION IX

CONCLUSIONS

The first objective of the Hypercube Matrix Computation task is to investigate the
applicability of a parallel computing architecture to the implementation and solution of
large-scale electromagnetic scattering problems. Three analysis codes are being assessed on
a parallel computing Mark I11 Hypercube. The first code which has been implemented is
the frequency domain method of moments solution, Numerical Electromagnetics Code
(NEC-2), developed at Lawrence Livermore National Laboratory. The second code is a
time domain finite difference solution to Maxwell's equations. A third code currently being
developed utilizes a finite element technique. The second objective of this effort is to
measure the performance of the parallel electromagnetics scattering analysis codes. The
third objective is to integrate the developed analysis capabilities into an Electromagnetic
Interactive Analysis Workstation. The workstation has been designed to facilitate all three
analysis functions: 1) graphical specification of the problem (Le., the object to be
analyzed), 2) execution of the analysis codes, and 3) graphical display of the output.

Several quantitative measures of performance may be applied when assessing the
applicability of parallel architecture to large-scale electromagnetics scattering problems.
First, the problem size possible on the hypercube with 128 megabytes of dynamic memory
for a 32-node configuration is compared with that possible on a conventional mainframe or
minicomputer. Second, the performance of the codes can be analyzed for the
computational speedup attained by the parallel architecture. The speedup can be measured
in at least three different ways: 1) comparing the times for the code running in 32 nodes
with the times for the code running in a single node; 2) comparing the times (and therefore
scalability to larger hypercube configurations) when the problem size per node is fixed and
the number of nodes in use is varied; and 3) comparing the CPU times for key components
of the code running on the 32-node Mark III Hypercube with the CPU times for the same
code components running, for instance, on a VAX 111750.

A. PROBLEMSIZE .

In addition to providing multiple processors for increased computing speed, parallel
computing architectures offer the possibility of an increase in available memory if each

9- 1

node has its own memory. The VAX 11/750 has about 5 megabytes of memory to a
typical user whereas the Mark 111 has four megabytes per node, which gives a total of 128
megabytes of dynamic RAM available on a 32-node hypercube.

For the NEC code, the size of the largest problem that can be run is determined by
the largest interaction matrix which can be stored in memory. The matrix is NT x NT with
NT = N + 2 x M where N is the number of wire segments and M is the number of patches
used to model the object. Unless the symmetry option can be invoked, the largest problem
that can run on the VAX in the typical user space has 300 equations. This means that the
largest object which can be modeled contains 300 wire segments or 150 patches. On the
Mark 111 32-node, the largest problem currently can contain as many as 2400 wires and or
1200 patches (more, if the symmetry is invoked). The total matrix which is distributed
across the nodes of the hypercube then contains 2400 x 2400 double precision complex
elements. This reflects a factor of 8 increase in terms of the number of patches in the
modeled object relative to that on a VAX. With the availability of four disk drives, the

maximum problem once the out-of-core capability is implemented is 5000 patches or
10,000 wires.

For finite difference code, the largest size problem is determined by the number of
unit cells used to model the computational lattice. For the VAX 11/750, we can allocate
memory for about 192,000 unit cells. For the Mark 111 Hypercube with 32 nodes active,
we can allocate memory for about 2,048,000 unit cells.

B. HYPERCUBE PERFORMANCE

1. Code Speed on 32 Nodes Relative to 1 Node

To measure the suitability of the codes to the parallel architecture of the hypercube,
we use the speedup factor, defined as the ratio of the run time on N nodes to the run time
on just 1 node. If there are no penalties associated with the parallel computing
decomposition, the speedup factor would be N. However, when a code is run on multiple
nodes of a parallel computer, the speedup does not increase linearly with the number of
nodes because there is some "overhead" associated with running in parallel. The parallel
overhead can be due to several sources: time spent in communication between nodes, time

9-2

lost if the work load among the nodes is not exactly the same, and additional code for the
administration of the parallel code.

The FDTD code is an excellent candidate for a parallel architecture because the fmite
difference method is intrinsically a "local" calculation. The computation at each grid point
utilizes information from at most two unit cells. This local calculation feature permits low
parallel communication overhead. Also, load imbalance is not a serious problem because
we can evenly divide the global grid among the nodes. The suitability of this code for
parallel computing is reflected in the high speedup factors. For the largest problem that
could be run on 1 node, the speedup factor in going from 1 to 32 nodes was 25.4 (or
79.3% efficient). It is important to note that because the problem size remains the same,
the number of cells in each node of a 32-node configuration is reduced by a factor of 32.
The larger hypercube configurations are therefore not run at full capacity. In other words,
the ratio of computation to communication times is reduced. For larger problems, where
we run the' same-size problem on 32 nodes that saturates an 8-node configuration, the
number of cells in each processor is reduced by a factor of 4. The speedup factor in going
from 8 nodes to 32 nodes is 3.7 (or 92.7% efficient).

For the NEC code, speedups are given for the two computationally intensive parts
of the code separately, the matrix fill and, the Gaussian elimination factorization time. The
speedup for these times summed are also given, in Section IV. The fill of the interaction
matrix is also ideally suited to parallel architecture because the various rows of the matrix
can be filled independently of each other, leading to very low communication overhead.
However, when the number of rows is not much larger than the number of nodes, load
imbalance becomes apparent in the statistics from the various nodes. Nevertheless, the
speedups found for the fill are excellent. For one of the largest problems that can fit into
one node (290 wire segments), the speedup factor for 32 nodes relative to 1 node is 25.1.

Because by nature matrix operations generally need information from many or all of
the other matrix elements, matrix computations typically demonstrate less speedup than
other algorithms, where the data internode communication requirements are low or
confined to neighboring nodes. For this reason concurrent implementation of matrix
algorithms requires great care. Data must be distributed so that the amount of
communication is minimized. For parallel NEC, the internode data dependency is reflected
in the relatively lower speedups for the factorization part compared to the fill. As shown in

9-3

Figure 4.26, an appreciable speedup factor of 21.4 has been obtained particularly for larger
problems (again, 290 wire segments).

2. Fixed Problem Size

Measuring how a problem scales by comparing the execution time on a 32-
node hypercube with the time on a single node tends to show a gradual drop in
performance as the number of nodes in use is increased. This occurs because the ratio of
computation to communication is dropping as the number of nodes is increased. Although
the overall problem size has remained the same, each node has less computational work to
do whereas the amount of communication has either remained the same or, in some cases,
increased. For this reason, to better understand how a particular algorithm scales to larger
hypercube configurations, we need to keep the computational load fixed.

The fixed problem size performance test has been performed for the FTDT code and
the fill of the interaction matrix in the parallel NEC code. In both cases, once the
computational load per node was held the same, the performance increased nearly linearly
with the number of nodes in use. In other words, the overhead incurred in both cases for
communication was small. We did not do the fixed case problem, however, for the matrix
factorization in the parallel NEC code. To keep the computational load fixed per node,
larger and larger matrices would need to be generated, requiring increasingly more
transformation steps. In this case the communication would increase with the number of
transformation steps required.

3. Comparison With Other Sequential Computers

Timing comparisons between the VAX and the Mark 111 32-node for the
NEC code were done for two different types of problems. One was a problem in which the
object was modeled by patches (Table 4.1) and the other one a problem in which the object
was modeled by wires (Table 4.2). Comparisons are provided for both because, for a
fixed number of segments or patches, the matrix fill portion of the code takes more
computations for wire structures than it does for surface patches. For the largest problems
that can be run on the VAX, the Mark I11 32-node overall is 29.6 times faster for the patch
case (224 patches) and 26.4 times faster for the wire case (290 wire segments). Thus a

9-4

wire case that runs for an hour on the VAX is reduced to 2.0 to 2.3 minutes on the Mark
I11 Hypercube. This speedup makes it feasible for the user to run the NEC code in an
interactive mode, rather than in a batch mode.

Direct timing comparisons between a Mark I11 Hypercube using 32 active nodes
and a VAX are not available for the finite difference time domain code. We can, however,
make an estimate of the relative performance by executing the Taflove sequential code on a
VAX and comparing it with the performance of the parallel FDTD code running on the
hypercube. Both codes are similar in capabilities. For a conducting cube embedded in a 40
x 40 x 40 lattice, the Mark I1 Hypercube ran approximately 22.7 times faster than the
Taflove code running on a VAX 11/750 and 8.8 times faster than that code running on a
VAX 11/785.

C . ELECTROMAGNETIC INTERACTIVE ANALYSIS WORKSTATION

The hypercube has reduced the execution times for the analysis codes so
significantly that even moderate-size problems can now be run interactively. To ease the
specification of the scattering or radiating structure and to simplify the interpretation of the
output, we have embedded the analysis codes in a workstation environment which
combines the computational power of the Mark I11 Hypercube with the color graphics and
user-friendly multi-window environment available on a Sun Color Graphics workstation.
The Electromagnetic Interactive Analysis Workstation allows the user to specify an object
to be analyzed by graphical object specification or by interacting with an application-
intelligent editor. Hypercube execution is invoked directly from within the workstation
environment. The output may be analyzed by requesting any of a host of 2-d and 3-d
graphical representations of such information as the currents, near fields, far fields, or
radar cross sections.

D. CURRENTWORK

In the finite element part of our electromagnetics analysis development, the
objective is to evaluate candidate matrix algorithms for parallel application in finite element
scattering problems on the hypercube. A family of iterative solution methods based on the
method of conjugate gradients has been demonstrated and shown to be amenable to

9-5

efficient parallel computation. Preliminary work on the development of the parallel
program is under way, and efforts in the near future will include the concurrent solution of
larger problems of practical interest, as well as enhanced matrix solution and domain
decomposition algorithms.

The parallel method of moments code (NEC) is being enhanced by the addition of
an iterative implementation of a Numerical Green's Function which will allow incremental
design of a structure. The addition of disk drives attached directly to hypercube nodes
allows the storage of previously factored interaction matrices which can be reloaded for
subsequent solutions. In addition, the disk drives allow larger problems to be solved by
permitting out-of-core solutions.

Although all of the timing runs presented in this report were made using the
Motorola 68020 math co-processor, the Motorola 68881, two 32-node hypercubes have
now become available with the floating point accelerator daughterboards added. In the fall

these 32-bit floating point units are scheduled to be upgraded to support @-bit arithmetic.
In addition, by January 1989 the 128-node Mark III Hypercube will be available. Soon we
plan to update the performance results for the test cases that we have reported here by using
the newly accelerated hypercubes.

We have demonstrated that the hypercube is very well suited to the solution of
large-scale electromagnetic scattering problems. Three different analysis codes are being
assessed: time domain finite difference, frequency domain method of moments, and
frequency domain finite elements. Each of the codes makes use of different numerical
algorithms and thereby provides a demonstration of the flexibility of the hypercube
architecture to different applications. The 32-node Mark 111 Hypercube has been used to
concurrently solve electromagnetic scattering problems too large and/or too time consuming
to be done on a sequential computer such as a VAX. Our ability to measure and
characterize the performance for variable-size hypercube configurations plus the additions
of the very high speed floating point processor daughterboards and of the concurrent
input/output devices allow us to extrapolate to the performance of even larger
configurations on larger problems.

9-6

TECHNICAL REPORT STANDARD TITLE PAGE

1 . Report No.

4. Title and Subtitle

2. Government Accession No.
JPL Pub. 88 - 31

Hypercube Matrix Computation Task

7. Author(s)
Rue1 H. Calalo, et al.

9. Performing Organization Name and Address

3. Recipient's Catalog No.

5. Report Date

6. Performing Organization Code

8. Performing Organization Report No I

IO. Work Unit No.

August 1, 1988

JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

12. Sponsoring Agency Name and Address

14. Sponsoring Agency Code NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546 E 2 3 2 PX-644-11-00-00-08

1 1 . Contract or Grant No.

13. Type of Report and Period Covered
NAS7-9 18

JPL Publication

15. Supplementary Notes

19. Security Classif. (of this report) 20. Security Clossif. (of this page) 21. No. of Pages

Unclassified Unclassified 183

16. Abstract

22. Price

A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion
Laboratory (JPL) is to investigate the applicability of a parallel computing
architecture to the solution of large-scale electromagnetic scattering problems.
Three scattering analysis codes are being implemented and assessed on a JPL/Cali-
fornia Institute of Technology (Caltech) Mark 111 Hypercube.
utilize different underlying algortithms, give a means of evaluating the general
applicability of this parallel architecture.
implemented are a frequency domain method of moments code, a time domain finite
difference code, and a frequency domain finite elements code.
capabilities are being integrated into an electromagnetics interactive analysis
workstation which can serve as a design tool for the construction of antennas and
other radiating or scattering structures.

Matrix Computation effort.
$&Ti?aas work previously reported in the "Iiypercube Matrix Computation Task:
Report for 1986-87" (JPL Publication 87-18).

The codes, which

The three analysis codes being

These analysis

This document is a summary of the first two years of work on the Hypercube
It includes both new developments and results as

Final

17. Key Words (Selected by-Author(s))

Computers
Computing
Comunicat ions

18. Distribution Statement

Unclassified - Unlimited

